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ABSTRACT 

KENNEDY, CHRISTOPHER BRANDON. GPT-Free Sensitivity Analysis for Reactor 
Depletion and Analysis. (Under the direction of Dr. Hany S. Abdel-Khalik). 

Introduced in this dissertation is a novel approach that forms a reduced-order model 

(ROM), based on subspace methods, that allows for the generation of response sensitivity 

profiles without the need to set up or solve the generalized inhomogeneous perturbation 

theory (GPT) equations. The new approach, denoted hereinafter as the generalized 

perturbation theory free (GPT-Free) approach, computes response sensitivity profiles in a 

manner that is independent of the number or type of responses, allowing for an efficient 

computation of sensitivities when many responses are required. Moreover, the reduction 

error associated with the ROM is quantified by means of a Wilks’ order statistics error metric 

denoted by the κ-metric.  

Traditional GPT has been recognized as the most computationally efficient approach 

for performing sensitivity analyses of models with many input parameters, e.g. when forward 

sensitivity analyses are computationally overwhelming. However, most neutronics codes that 

can solve the fundamental (homogenous) adjoint eigenvalue problem do not have GPT 

(inhomogenous) capabilities unless envisioned during code development. Additionally, codes 

that use a stochastic algorithm, i.e. Monte Carlo methods, may have difficult or undefined 

GPT equations. When GPT calculations are available through software, the aforementioned 

efficiency gained from the GPT approach diminishes when the model has both many output 

responses and many input parameters. The GPT-Free approach addresses these limitations, 

first by only requiring the ability to compute the fundamental adjoint from perturbation 

theory, and second by constructing a ROM from fundamental adjoint calculations, 
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constraining input parameters to a subspace. This approach bypasses the requirement to 

perform GPT calculations while simultaneously reducing the number of simulations required. 

In addition to the reduction of simulations, a major benefit of the GPT-Free approach 

is explicit control of the reduced order model (ROM) error. When building a subspace using 

the GPT-Free approach, the reduction error can be selected based on an error tolerance for 

generic flux response-integrals. The GPT-Free approach then solves the fundamental adjoint 

equation with randomly generated sets of input parameters. Using properties from linear 

algebra, the fundamental k-eigenvalue sensitivities, spanned by the various randomly 

generated models, can be related to response sensitivity profiles by a change of basis. These 

sensitivity profiles are the first-order derivatives of responses to input parameters. The 

quality of the basis is evaluated using the κ-metric, developed from Wilks’ order statistics, on 

the user-defined response functionals that involve the flux state-space. Because the κ-metric 

is formed from Wilks’ order statistics, a probability-confidence interval can be established 

around the reduction error based on user-defined responses such as fuel-flux, max-flux error, 

or other generic inner products requiring the flux. In general, The GPT-Free approach will 

produce a ROM with a quantifiable, user-specified reduction error. 

This dissertation demonstrates the GPT-Free approach for steady state and depletion 

reactor calculations modeled by SCALE6, an analysis tool developed by Oak Ridge National 

Laboratory. Future work includes the development of GPT-Free for new Monte Carlo 

methods where the fundamental adjoint is available. Additionally, the approach in this 

dissertation examines only the first derivatives of responses, the response sensitivity profile; 

extension and/or generalization of the GPT-Free approach to higher order response 

sensitivity profiles is natural area for future research.  
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1. INTRODUCTION 

1.A Background and Motivation 

 Nuclear reactor design calculations are a computationally intensive endeavor because 

of but not limited to the physical complexity of reactor models, the extensive set of coupled 

physics equations, and the variable time-scales of nuclear phenomena. Iteration of reactor 

design requires repeated execution of software that takes not only numerous computer hours 

but also many engineering-hours. These iterations may often be encapsulated by an 

optimization problem: maximizing the economic potential of a very large complicated 

physical system while simultaneously meeting safety constraints across several physics (e.g. 

materials, fluids, neutronics, heat transfer, systems, etc.). When considering safety 

constraints or other design criteria, an uncertainty analysis can be used to estimate response 

uncertainties due to the propagation of input parameter uncertainties through the model. 

Because of the multi-scale approach to modeling with the coupling of several physics, a 

deterministic solution of response uncertainties is problematic to determine without repeated 

simulation. Additionally, a nuclear scientist may wish to improve the accuracy of the 

fundamental nuclear cross-sections to improve the accuracy of existing software through a 

technique known as data assimilation; however, such a technique requires knowledge of the 

relationship between input parameters and output responses, which for the same reasons as 

the uncertainty analysis are difficult to obtain in closed-form. For these three approaches, 

optimization, uncertainty analysis, and data assimilation, a sensitivity analysis is completed 

to determine the relationship between input parameters and output responses. The sensitivity 
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analysis aids the nuclear engineer in understanding the relationships among the input 

parameters, e.g. cross-sections, geometry, etc., and output responses, e.g. fluxes, reaction 

rates, power-densities, etc. Depending on the nuclear reactor model, there exist millions of 

input parameters and output responses; design decisions quickly become problematic without 

knowledge of model sensitivities. While underlying physical phenomena may be very 

complex, a first-order sensitivity analysis may simplify the relationship by calculating the 

first derivative of output responses to input parameters. In general, higher-order derivatives 

can be determined; however, the curse of dimensionality makes higher-order sensitivity 

analysis significantly more expensive. Regardless of the sensitivity analysis order, the 

objective is to speed up engineering design calculations by taking advantage of the 

correlations among output responses, thereby enabling faster computation of sensitivities 

using existing nuclear modeling software. 

 Accurate modeling of nuclear reactor systems requires the processing of millions of 

input parameters and output responses due to the heterogeneity of a reactor core and the 

complexity of neutron interactions. A full-core 3D heterogeneous model coupling all 

interacting physics is intractable because of the multi-scale, from nanometers to meters, and 

multi-physics, e.g. neutronics and fluids, nature of the problem. For example, if a reactor 

model were spatially discretized to a fraction of a fuel rod radius, with tens of thousands of 

fuel rods in a reactor, there would exist hundreds of millions of spatial regions; when 

including a coarse energy grid – neutron energies span orders of magnitude in a nuclear 

reactor – the state-space easily exceeds billions of regions. Even with today’s available 

computing power, billions of discretization regions are not practically solved; the problem 
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must be broken down strategically, e.g. fuel pins and assemblies, to preserve accuracy while 

reducing computational overhead. The process of breaking up design calculations into a 

sequence that addresses the various scales of the underlying physics, e.g. multi-scale 

modeling, in nuclear engineering requires homogenization theory. The homogenization 

process, while making the calculations feasible, may still be computationally expensive and 

is still iterative. Any process or approach that can reduce the number of steps to solve a 

reactor design calculation is computationally favorable. 

 Since 1945, nuclear scientists have successfully employed perturbation theory (PT) to 

efficiently calculate k-eigenvalue sensitivity profiles; generalized perturbation theory (GPT), 

developed shortly after PT, expands on the theory, describing the first order derivatives of 

generic output responses with respect to input parameters†. Both PT and GPT are general 

mathematical tools applied to nuclear engineering to compute sensitivity profiles. By forming 

the adjoint neutronics equations, the number of calculations required to compute sensitivities 

is significantly reduced. More specifically, GPT formulates the response and region specific 

adjoint model, the solution of which can be used in conjunction with the solution to the 

forward model to directly calculate the sensitivities of a given response with respect to all 

input parameters via inner product relations. Therefore, the computational cost of evaluating 

sensitivities for a model with m responses and n input parameters reduces to m adjoint 

evaluations and 1 forward evaluation as opposed to n + 1 forward evaluations with a forward 

sensitivity approach. When m is much less than n, the adjoint approach becomes superior; 

however, when both m and n are large, there may not be a clear advantage to using the GPT 

                                                
† Generic output responses must still be allowable under GPT theory. See Williams 1986 for additional details. 
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approach over the forward approach. Because of these advantages when the responses of 

interest are far fewer than the number of input parameters, PT and GPT have been employed 

to solve a variety of analysis problems such as: control rod worth, fuel cycle optimization, 

reactivity coefficients, boundary condition analysis, and sensitivity analysis. 

 Despite the widespread use and significant power of GPT, it has several well-known 

limitations. First, the ability to compute general response sensitivities requires the capability 

to form and solve the GPT adjoint equations. The GPT adjoint equations are similar in form 

to the forward equations (in the form of a generalized eigenvalue problem) but they require 

an inhomogeneous source definition based on the response of interest. For deterministic 

neutronics models, the adjoint equations can be crudely described by the transpose matrix 

operator of the forward model. When constructing the adjoint for multi-physics models, not 

only must the boundary conditions and source terms be carefully considered, but also custom 

software for the multi-physics models will be required to solve the GPT equations. For 

existing codes that lack these features, the cost of implementation can be expensive and/or 

prohibitive. For probabilistic models, an adjoint model is set up by reversing the track of 

neutrons. While this approach has been demonstrated for source driven problems, there 

currently exists no general theory on how to implement an adjoint model for eigenvalue 

problems. Second, typical adjoint simulations in PT and GPT problems require significantly 

more computational effort compared to the forward simulation; one forward run is not 

equivalent to one adjoint run‡. As the number of output responses of interest increases, the 

GPT approach suffers from the same problem as forward simulations for large models with 
                                                
‡ The actual difference is problem dependent; the adjoint typically took 2-3x longer than a forward run for the 
models examined in this dissertation. 
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many output responses, m, and many input parameters, n. Because nuclear cross-sections 

span many orders of energy and are reaction, isotope, and temperature dependent, the input 

parameter space can quickly grow as computational power and data accuracy allows. Output 

responses depend on the state-space, which is lower dimensional than the input parameter 

space; however, as the state-space, i.e. flux, is refined in energy and in space, through either a 

decrease in homogenization or an increase in mesh refinement, the output parameter 

dimension can begin to make GPT approach computationally intractable. 

 The objective of this dissertation is to address the limitations of GPT by allowing for 

GPT calculations when either a) the GPT calculation is not possible or b) when the number 

of GPT responses is large and computationally intractable. The goal is to allow for wider-

spread usage of sensitivity profiles in engineering design and optimization, uncertainty 

analysis, and data assimilation. More specifically, the objectives are as follows: 

1. Develop an approach to efficiently compute response sensitivities without formation 

or solution of the GPT equations using only the fundamental adjoint from PT. 

2. Quantify the reduction error from reduced order models used in this approach. 

3. Quantify the error in response sensitivities determined using this approach. 

4. Couple depletion and neutronics for depletion perturbation theory GPT problems. 

This dissertation meets these objectives by means of a new hybrid approach, denoted 

generalized perturbation theory free (GPT-Free), to sensitivity analysis. The first problem 

addressed is the ever-increasing model dimensionality in both input parameters and output 

responses. The hybrid approach attempts to form a reduced-order model (ROM) using 
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information from both the input parameters and the output responses. The ROM forms a 

problem-specific basis of lower dimension that allows one to more quickly perform a 

forward sensitivity analysis. Additionally, construction of the ROM can be set such that the 

model reduction error is below a quantifiable user-specified threshold. In summary, the ROM 

is to allow for a more computationally efficient forward sensitivity analysis. The second 

problem addressed is when the construction of GPT equations is not feasible; this happens 

when the software source is unavailable or formulation of the GPT equations is not amenable 

e.g. Monte Carlo models or complex multi-physics problems. The hybrid approach allows for 

the calculation of the response sensitivities using only the fundamental (homogenous) adjoint 

as opposed to the GPT response-specific adjoint. As proof of principle, this approach will be 

applied to deterministic models to evaluate responses sensitivities with respect to the multi-

group cross-sections. 

 A statistical metric introduced in this dissertation, denoted the κ-metric, meets the 

objectives for quantifying the reduction error from using the GPT-Free ROM as well as an 

error estimate for response sensitivities calculated using the GPT-Free approach. One 

difficulty with measuring the effectiveness of a ROM is quantifying the error introduced by 

using the ROM, because the error may vary depending on parameters of the model. The κ-

metric was designed to address this problem by implementing Wilks’ order statistics in order 

to quantify the error with a probability/confidence interval. The κ-metric gives a probability p 

that a given ROM reduction error is met with confidence c given N samples of the ROM 

error. The metric is flexible in that the error can be tuned for the ROM or response error of 

interest. 
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 This dissertation also expands on the GPT-Free approach by including a method to 

address depletion, a multi-physics problem. Depletion problems offer additional complexity 

because the reactor is no longer at steady-state due to burn-up of the reactor fuel. Current 

adjoint methodologies require specialized adjoint calculations at each time step for each 

response. The GPT-Free approach has been extended to consider depletion without requiring 

specialized generalized adjoint calculations. 

1.B Document Organization 

The dissertation is organized into seven major sections, each containing information 

to help the engineer or scientist better understand and apply the GPT-Free approach. The first 

section includes the background and motivation, organization of the document, and 

foundations for the mathematical notation used throughout the dissertation. The primary 

focus of this section is to demonstrate the importance of gradients in optimization problems 

common to nuclear engineering reactor calculations. While perturbation theory and 

generalized perturbation theory have been successfully used to find gradient information, 

they suffer from limitations for high-dimensional models and software packages that lack 

GPT capabilities. The GPT-Free approach is then introduced as a method to use existing 

perturbation theory technology to bypass the limitations of GPT. 

The second section provides a brief overview of nuclear reactor calculations for the 

non-nuclear engineer. A brief overview of nuclear cross-sections, a fundamental nuclear 

parameter, and reactor calculations is included. The importance of the reactor calculation 

steps assists with understanding the level of calculation involved in a reactor model. 
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A review of the literature for the underlying methodologies for generalized 

perturbation theory, perturbation theory, Monte Carlo transport, and reduced order models is 

included in section three. Literature for both GPT and PT are explored and then narrowed 

down to the nuclear engineering field specific uses. Background equations for PT and GPT 

are developed to illustrate the additional work required to develop GPT formalisms in 

software. The Monte Carlo adjoint section is included to demonstrate the difficulty of 

developing a Monte Carlo transport generalized adjoint, especially with sufficient statistics. 

Lastly, because the GPT-Free approach ultimately develops a reduced order model, a brief 

overview of reduced order models and their applications to nuclear problems is included for 

completeness. 

Section four begins the introduction of the GPT-Free approach applied to reactor 

problems, including details on the theory, formulation, the κ-metric, and studies of the 

method applied to different particular problems. The κ-metric addresses the problems with 

quantifying reduction errors for reduced order models and is not restricted to the GPT-Free 

approach. Furthermore, the effects of numerical inaccuracies such as mesh sizes, and 

geometry considerations for assemblies are considered while using the GPT-Free approach. 

The fifth section builds on the fourth by extending GPT-Free to depletion and Monte 

Carlo problems by introducing additional theory, examples, and equations. Demonstration of 

the theory is included with some numerical examples to set the foundation for the theory. The 

formalism is then expanded to include an algorithm to apply the GPT-Free approach to a 

depletion model. The Monte carlo models section is based on Kiedrowski’s continuous k-

eigenvalue sensitivity calculation (Kiedrowski 2010). 
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The numerical demonstrations and benchmarks of the GPT-Free approach using the 

UAM depletion model and the TMI mini-core reactor model are included in the sixth section. 

This section includes benchmarks for a fast-metal sphere, JEZEBEL, the HTGR reactor 

lattice (Dehart 2009), The UAM depletion model (Ivanov 2007), and the TMI 9 assembly 

mini-core reactor model derived from the TMI-1 UAM 15x15 assembly model (Ivanov 

1999). Sample calculations involve determination of the ROM dimension, reduction error 

introduced using the ROM, sample sensitivity profiles, and sample sensitivity demonstrations 

using the GPT-Free approach. 

The last sections are reserved for conclusions, future work, references and 

appendices. These sections wrap up details and comments on the GPT-Free approach, 

feasibility, areas for improvement and opportunities, and limitations. Included in the 

dissertation appendices are notes on the different software implemented (e.g. SCALE6, 

PYTHON, MATLAB, etc.) and the various algorithms generated to benefit from high-

performance computing clusters. 

 

1.C Mathematical Notation 

 This section specifies the notation used for mathematical quantities in this 

dissertation. Unless otherwise specified, all calculations are completed with real numbers and 

are finite-dimensional. Fundamental linear algebra concepts explained in this section of the 

dissertation can be studied further in ref. Meyer, 1999. 

 Matrices and operators are denoted by bold-faced capital letters and capital Greek 

letters, e.g.    A ∈!m×n  is a matrix with m rows and n columns. Similarly,   Γ ∈! p×q is a matrix 
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with p rows and q columns. Operators are understood when the dimension is not explicitly 

defined. Elements of a matrix are denoted by two indices, the first indicating the row, and the 

second indicating the column, e.g. ijA  denotes row i and column j. A vector of a matrix is 

denoted with an asterisks replacing the general dimension, e.g. Ai* denotes row i of A and A*j 

denotes column j of A. A single subscript on a matrix denotes a named subset of the matrix 

which will be explicitly defined when used, e.g. 1* *pp …⎡ ⎤= ⎣ ⎦AA A . When the adjoint of a 

matrix or operator is considered, the matrix will be denoted with a superscript asterisks, e.g. 

*A . This is not to be confused with the complex matrix transpose as the field of numbers is 

reals. 

 Vectors and scalars are denoted by lower-case letters. Scalars are considered to be 

vectors of dimension one, e.g.   σ ∈!n is a vector of length n and  α ∈! is a vector of length 

one. By default, all vectors are column vectors unless otherwise specified such that the inner 

product Tx x  results in a scalar result, e.g. 
   
xT x = xi

2

i=1

n

∑ where x ∈!n . Elements of vectors are 

denoted by an index, e.g. ix . When the adjoint of a vector is considered, the vector will be 

denoted with a superscript asterisks, e.g. *φ . 

 Inner products between two vectors x and y are denoted with the transpose notation, 

e.g. Tx y . For more complicated or generic inner-products involving matrices and vectors, 

the bracket notation may be used to improve clarity, e.g. see Eq. 1. 

	
  
    

x, A − λB( ) y ≡ xT Ay( )− λ xTBy( ) λ ∈1 	
   (1)	
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Norms are defined with the double bar notation, · , where the definition of the norm 

is typically defined in the problem context. When no definition is provided, the default is the 

l2 norm of vector defined as
   
x

2
=

i=1

n

∑xi
2 = xT x where x ∈n . For matrices, the l2 norm is 

an induced matrix norm. 

Orthogonal and parallel components of vectors are based on projections and 

orthogonal decompositions. Given an orthonormal basis Q, a vector x can, by projection, be 

broken apart into orthogonal and parallel components. For example, see Eq. 2 where x is 

broken into a component orthogonal to Q and parallel to Q. A visual illustration of this 

concept is shown in Fig. 1. 

 

 
Figure 1: Projection of x onto the subspace represented by Q. 

 
 

	
  

    

x = QQT( )x

x||
 

+ I −QQT( )
x⊥

  
x 	
   (2)	
  

x

x⊥

||x

|| and 0T Tx x x⊥= =QQ Q

Q
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Matrices can be decomposed into their orthogonal components. The four spaces of a 

matrix are the column-space (range), row-space, null-space, and left null-space which are 

available through various orthogonal decompositions. For illustrative purposes, the singular 

value decomposition (SVD) of a matrix breaks a matrix down into these four spaces. 

	
      A = UΣVT A ∈m×n U ∈m×m V ∈n×n Σ ∈m×n 	
   (3)	
  

Where for a matrix A of rank r the spaces, from Eq. 3 are as follows: 

	
  

[ ]
( )

[ ] ( )
( ) ( )

*1 *

*( 1) *
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r r
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+

+

=

⎡ ⎤= ⎣ ⎦
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⎡ ⎤= ⎣ ⎦
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…
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V V A A

R

N

R
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   (4)	
  

These spaces of the matrix denote important properties on solutions of matrix-vector 

products. Shown in Eq. 5 are important properties related to the null-space and left null-space 

of a general matrix A. 

	
  

    

Ax = 0 if x ∈N A( )
AT y = 0 if y ∈N AT( ) 	
   (5)	
  

Additionally, the spaces are complements of one another: 

	
  
    
R A( )⊥ N AT( ) and R AT( )⊥ N A( ) 	
   (6)	
  

The inverse and pseudo-inverse (Moore-Penrose inverse) of a matrix are denoted 

distinctly in this dissertation. The generic inverse is the strict square-matrix definition such 

that right or left-multiplication yields the square identity matrix, e.g. 

    A
−1A = AA−1 = I, A,I{ }∈n×n . The pseudo-inverse operates on rectangular matrices, and is 
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often used in least-squares solutions, e.g.     x = A†b, A ∈m×n , x ∈n , b∈m , and m > n . The 

pseudo-inverse varies for left and right multiplication depending on the structure of A. 

The letters m, n, r, i, and j are reserved for indices and dimensions. For matrix 

quantities m typically denotes the numbers of rows and n indicates the number of columns. 

Likewise m and n may represent the number of entries in a vector. The indices i, and j are 

reserved for the specification of elements in both vectors and matrices. The letter r is 

reserved for the rank of a matrix, often representing the dimension of a related subspace. 

 Uppercase roman letters are reserved for special notations, typically special quantities 

such as atomic densities (N), energy groups (G), or upper limits on iteration indices. From the 

notation, these values are explicitly defined. 

Macroscopic cross-sections are denoted with a capital sigma. This letter does not 

correspond with matrices and is a notational exception. Macroscopic cross-sections may be a 

scalar or a vector quantity, e.g. Σ = Nσ where σ ∈ n and N ∈ 1 . As written, N is the 

number density of a nuclide and σ is the vector of microscopic cross-sections. 

	
  

  



www.manaraa.com

 

    14 

2. A BRIEF REVIEW OF REACTOR CALCULATIONS 

2.A Nuclear Calculations 

Nearly 15% of the world’s electricity is generated from over 400 nuclear power 

plants internationally (USDOE 2012). This important resource is possible through untold 

numbers of person-hours devoted to research, experimentation, design, construction and 

simulation. Because of the complexity of nuclear reactor calculations, due to time-dependent 

multi-scale multi-physics dictating the behavior of a reactor system, modeling and simulation 

tools play an important role in the research and development of cutting-edge reactor design. 

Simulation of these nuclear systems is difficult for many reasons, but for brevity, 

three important contributors are discussed herein. First, the complexity of the neutron 

transport equation, a seven dimensional integro-differential equation in time, space, energy, 

and angle shown in Eq. 7, does not have analytical solutions except for the most simplistic of 

systems (Duderstadt 1976, Bell 1970). Attempts to provide more sophisticated analytical 

benchmarks have since been undertaken by Ganapol in order to provide mathematical 

comparisons (2008). Without analytical benchmarks, the verification and validation of 

software to theory becomes a unique challenge of its own.  

	
  
( ) ( )

4

, , ,
· ,1 , ,t Q r E

r E t
d dE t

tv π

ψ
ψ ψ

∂ Ω
+Ω ∇ −Σ = Ω Ω

∂ ∫ ∫ 	
   (7)	
  

Second, experimental mock-ups for reactor systems are not economically feasible. 

Even small-scale thermal-hydraulics simulations can cost millions of US dollars in excess of 

the majority private and public research engineering budgets. Evaluations must instead be 

made in comparison to the currently available body of experiments. The lack of experimental 
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benchmarks compounds the issue rising from a lack of analytical benchmarks, that is, the 

difficulty validating models representing Eq. 7 is increased.  

The third difficulty discussed herein is the complications arising from the numerical 

modeling of Eq. 7. Currently available computing power makes the full reactor simulation 

impractical whether the simulation is deterministic solution of partial differential equations 

or a first-principles Monte Carlo particle flight simulation; a comparison of the two 

methodologies is discussed further in this section. In order to make the simulations 

computationally feasible, approximations and/or assumptions in Eq. 7 must be made, e.g. 

homogenization of spatial components, diffusion physics assumptions, reduction in spatial 

dimensions, selection of coarser energy groups, etc. (Stamm’ler 1983). As research and 

reactor design pushes forward for more accurate evaluations, more computational power 

and/or time is required. 

 Regardless of our ability to accurately model Eq. 7, the accuracy of results is also 

strongly dictated by our knowledge of the fundamental data, i.e. cross-sections. Nuclear 

cross-sections represent an area-based interaction probability between a nucleus, assumed at 

rest at a given temperature T, and an incident particle with energy E. These cross-sections, an 

example of which is shown in Fig. 2, are experimentally determined and are dependent on 

the isotope, the temperature of the target, the incident particle energy, and the nuclear 

reaction under consideration. Because the incident particle of interest, the neutron, lacks a 

chart, calibrating cross-section results to neutron energy is a challenging process that 

increases the uncertainty of experiments. Additionally, because all nuclear models require 
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fundamental cross-section data there will be measurable uncertainty in all derived results; 

even if Eq. 7 is modeled perfectly with infinite time and precision. 

Neutron cross-section uncertainty exists because of the difficulty in measuring precise 

energy-dependent cross-sections. Neutrons are not charged particles, so determining the 

energy of neutrons involves costly time-of-flight measurements. These energy calibrations 

are typically completed by tuning equipment to nearby well-defined resonances. 

Additionally, due to the low interaction probability of some cross-sections, accurate 

measurements become cost-prohibitive to measure. For more details on the evaluation of 

nuclear cross-sections and their associated uncertainties, see chapter one in (Cacuci 2010). 

 

 

Figure 2: Uranium-235 fission cross-section at 293o
 K. 
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 To handle the computational limitations of reactor core transport simulations from 

Eq. 7, the calculation sequence to model an entire core must be carefully addressed. 

Traditionally a high-fidelity 1-D or 2-D simulation of fuel-pin cells are generated with many 

energy groups. Using this data, cross-sections are homogenized in energy and used for a 2-D 

assembly level calculation. After assembly-level calculations, additional spatial and energy 

homogenization occurs alongside physics reduction from transport to nodal diffusion to 

complete core-wide simulations. At this level reactor safety parameters can be checked, 

transients can be appropriately studied and so forth. See Fig. 3 from Stamm’ler (1983). 

 

 

Figure 3: Reactor physics calculation flow-chart (Stamm’ler 1970). 



www.manaraa.com

 

    18 

The end goal for reactor calculations is the spatial distribution of neutrons and the 

power level in the reactor. From this information, appropriate safety and operational 

calculations can be made. Because of the computational intractability to model a fine-group 

time-dependent 3-D transport reactor core, calculation steps using homogenization according 

to the calculation flowchart are required.  

Reactor calculations begin with the preparation of cross-section library data for a 

fine-energy group calculation of a localized pin-cell. The results of these fine spectrum 

calculations enable an accurate homogenization of the pin-cell cross-sections in preparation 

of assembly level calculations. A sample 2-D pin-cell transport model is shown in Fig. 4. 

Due to the near-standard thermal design of nuclear reactors, these few-group cross-section 

libraries are often widely available as packages alongside transport solver packages. 

Examples of few-to-many group pre-compiled thermal neutron libraries are the 44 and 238 

group thermal cross section libraries included in the SCALE code package (2005). 
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Figure 4: A simple 2D fuel pin-cell model 

 

Upon generation of few-to-many group cross-section libraries assembly-level 

calculations become computationally feasible. A sample 2-D UAM assembly model is shown 

in Figure 5. For calculations on assemblies, typical calculations evaluate fuel-pin flux data 

using reflective boundary conditions. This flux data is used to collapse down to 2 – 4 energy 

groups and homogenize the spatial data to a single FA XS. These FA XS are used for core-

wide nodal diffusion calculations for fast core simulators (Cacuci 2010, Stamm’ler 1983).  
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Figure 5: UAM assembly model from SCALE. 

 

 Calculations for the entire core using homogenized few group nodal-diffusion allow 

for reactor-core wide effects such as: FA relative powers, core-wide neutron distributions, 

etc. A few core simulators currently in use today include NESTLE, FORMOSA-B, HELIOS 

(Moore 1999, Turinsky 1995, Villarino 1992). For a sample numerical setup of a full-core 

calculation, see Figure 6. Because the technical details of this report focus on the pin and 
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assembly level numerical demonstrations, details for full-core calculations will be left to the 

interested reader. 

 

 

Figure 6: BWR quarter-core symmetry reactor model (Martin-del-Campo 2004). 

  

 While there are several steps to prepare XS to ultimately obtain full reactor-core 

calculations, there are two primary modeling philosophies that enable calculations of reactor 

components. The deterministic model involves solving variants of the neutron transport 

equation in Eq. 7. In solving the deterministic model, a generalized eigenvalue problem is 

solved over some region, usually at steady-state (time-independent) to obtain the average 

value of neutrons in mesh-cells. Any effects in time typically require a decoupling of the 

physics, e.g. depletion models, or a dramatic simplification of the physics, e.g. point reactor 

kinetics. In contrast, Monte Carlo models involve first-principles stochastic particle 



www.manaraa.com

 

    22 

simulation; individual neutrons are simulated within a region of space and reactions are 

simulated using continuous energy physics. Monte Carlo models, being stochastic averages 

of particle tracks, require many (millions or more) particles and a large amount of 

computation time (days to weeks); however, more complicated geometries can be modeled. 

Due to the excessive run-time and uncertainty introduced on outputs due to random 

sampling, Monte Carlo models are not suitable for applications where calculation time is a 

premium (e.g. online core simulators). Additionally, the uncertainty on outputs is 

problematic in regions with low particle counts such as in slab penetration problems. The 

disadvantage of deterministic codes includes homogenized/simple geometries and non-

continuous energy representation for neutron transport. For additional details on Monte Carlo 

transport, see references (Carter 1975, Brown 2002). Similarly for deterministic models see 

(Duderstadt 1976, Cacuci 2010, Bell 1970, Stamm’ler 1983). 

 
2.B Sensitivity Analysis Motivations 

This dissertation introduces an approach to obtain response-gradient information, i.e. 

response sensitivity profiles, without the formulation or solution of the generalized adjoint 

equations. Any technique that yields sensitivity data falls into the category of a sensitivity 

analysis, relating output responses to input parameters.  The motivation for sensitivity 

analyses is usually for one or more of the following: design optimization, uncertainty 

quantification, and data assimilation. 

Design optimization is a mathematical technique that finds the local best-fit of a set of 

parameters to a model, often with a set of constraints. Common sets of engineering 



www.manaraa.com

 

    23 

constraints include minimizing costs, maximizing profits, meeting safety limits, and 

maintaining the system within physical constraints. These constraints or design objectives 

often are in competition of one another such that there are many local optimums; however, a 

better optimum may be nearby. For an optimization problem, the following conditions for an 

optimum must be met for a function f with   x ∈!n  input parameters: 

	
   ( )*
0 1

i

f x
i n

x
∂

= ∀ ≤ ≤
∂

	
   (8)	
  

In Eq. 8, the optimum solution is denoted x*, with the derivative with respect to all input 

parameters equal to zero at the optimum. Similarly, to denote the point as being a minimum 

(as opposed to a maximum or inflection point): 

	
  
  

∂2 f x*( )
∂xi

2 > 0 ∀ 1≤ i ≤ n 	
   (9)	
  

For high-dimensional systems, obtaining gradient information as in Equation 8 can be costly 

at best; however, when available, optimization schemes can benefit from gradient 

information to quickly find local optima (Kelley, 1999). Any scheme that allows for a faster 

determination of response sensitivities, i.e. response gradients, or allows for determination of 

these sensitivities that is otherwise unavailable, e.g. Monte Carlo methods, would be 

beneficial for numerous design optimization problems in the nuclear engineering community. 

 Uncertainty Quantification attempts to propagate uncertainty information from input 

parameters to output responses through a model. Consider any nuclear reactor model, reliant 

on cross-sections with inherent uncertainty. The output of safety parameters, pin-powers, and 

feedback parameters will have an uncertainty as a result of the uncertainty in the input 
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parameters. In a first order approach, the uncertainty can be propagated to the output 

parameter by means of the sandwich rule (Cacuci 2008, Cacuci 2010, Dean 2007). For a 

given covariance matrix Cx of n input parameters a corresponding covariance matrix Cy of m 

output responses can be constructed when the sensitivity matrix S is known (Eq. 10). 

	
  
   
C y = STCxS S ∈!n×m Cx ∈!

n×n C y ∈!
m×m 	
   (10)	
  

Propagation of uncertainties requires knowledge of the sensitivity profiles, stored in S and 

the covariance of the input, Cx. Similar to design optimization, any scheme that provides 

these sensitivity profiles more quickly or when it is unavailable allows for the possibility of 

uncertainty propagation calculations. This relationship can be further optimized by 

constraining sensitivities and covariance data to input parameters that are relevant to the 

model (Bang 2011). 

Data assimilation attempts to update the mean value of specific model parameters 

given covariance information and sensitivity information. This style of model parameter 

fitting has been widely used in the atmospheric sciences (Daley 1991, Ghil 1991) and in 

nuclear engineering (Gandini 1988); the topic of data assimilation has recently again become 

of interest to nuclear engineers in order to improve cross-section accuracy (Cacuci 2008, 

Palmiotti 2010). 

 Data assimilation usually requires two-steps, the first is the relation of all inherent 

models sensitivities to come up with a combined sensitivity (Eq. 11) relating a measured 

output parameter to an input parameter that will be updated. 

	
  
1

n
k k

ij i j

iR R x
u x u=

∂ ∂ ∂=
∂ ∂ ∂∑ 	
   (11)	
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Once this has been completed, a cost function, using the uncertainties of the input parameters 

and the resulting data are used to solve an optimization problem to update the input 

parameters, denoted u in Eq. 11. The details of this optimization procedure, development of 

the cost-function, and other details are not provided in this dissertation but a search of the 

literature or aforementioned references will lead to many available tools and methods.  
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3. LITERATURE REVIEW 

3.A Generalized Perturbation Theory 

 Generalized perturbation theory (GPT) is a mathematical technique that develops 

both an adjoint relation and an inner product to estimate how model parameter perturbations 

affect user or problem-defined output responses. The original developments of perturbation 

theory (PT), and similarly GPT, were rooted in physics, being formally developed by 

Schrödinger (1926) and Lord Rayleigh (1894) and leading to the term Rayleigh-Schrödinger 

perturbation theory. Over the last century, PT and GPT have been expanded to the physical 

sciences from various fields such as nuclear engineering (Gandini 1967, Williams 1978), 

optics (Mitsunaga 1985), quantum mechanics (Pople 1955, Schrödinger 1926), chemistry 

(Sowers 1991, Andersson 1990), plasma physics (Al’tshul’ 1966), and general mathematics 

(Primas 1963). 

 When the nuclear engineering field was first being developed, PT and GPT 

techniques were quickly adopted into research studies such as the calculation of pile period 

due to perturbations by Wigner (1945) and the evaluation of reaction-rate ratios by Usachev 

(1964). Since the introduction of GPT to the nuclear field, the technique has been applied to a 

wide body of problems of interest to the nuclear engineer. The study of reaction-rate ratios 

such as in Eq. 12 has been a common process studied by many scientists such as Usachev 

(1964), Williams (1978, 1986), Pomraning (1967, 1987), Lewins (1966), Gandini (1967), and 

Stacey (1972, 1974).  

	
   ( )1 2 e.g
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   (12)	
  



www.manaraa.com

 

    27 

GPT was formulated to calculate k-eigenvalue criticality sensitivity profiles (see Eq. 13) with 

respect to the nuclear cross-section data (Pomraning 1966, Pomraning 1967, Stacey 1972) 

which has since been used for reactor design calculations (Kando 1971).  

	
  
, ,,

, ,

, ,

Reactions Energy Groups Regions
x g zk

x g z

x g z

k
k x g zs σ σ
σ

∂
∈ ∈ ∈∂= 	
   (13)	
  

Boundary condition perturbation theory was first used by Komata (1977) to estimate changes 

in the reactor neutron distribution and k due to perturbations of the reactor geometry, and has 

since been expanded further by Larsen (1981), McKinnely (2001), Rahnema (1983, 1999), 

Yamamoto (1997) and Petrov (1985). The study of reactor kinetics such as feedback and 

reactor period–building upon Wigner in 1945–has also benefitted from the GPT methodology 

by scientists such as Williams (1991), Harries (1978), and Kiedrowski (2010). Reactor 

operation burns the fuel in the reactor through depletion, which also benefits from the rigors 

of GPT (Williams 1978, Yang 1989). The formalism of GPT has been revised throughout the 

decades of research into the subjects. For a more complete list of references and 

mathematical formalisms, see the following references (Cacuci 1980, 2003, 2010; Oblow 

1976, Williams 1986, and Stacey 1974, 2001). 

 Generalized Perturbation Theory is distinguished from perturbation theory in nuclear 

engineering by the definition of a source-term. For steady-state calculations of the neutron 

flux using the transport equation, the forward and adjoint models are closely related as in Eq. 

14. 

	
   * * * * *
*0 a1 1nd q

k k
φ φ φ φ= =− −L FLF 	
   (14)	
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For perturbation theory, the adjoint source-term q* is zero; however, for generalized 

perturbation theory the source depends on the response parameter of interest by the relation: 

	
   { }( )*
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The response in Eq. 15 is a user or problem-defined functional composed of m, arbitrary, 

inner-products of the cross-sections and the flux. The term generalized comes from the fact 

that the homogenous adjoint used in perturbation theory is primarily used to calculate 

eigenvalue sensitivities whereas the generalized adjoint with arbitrary source term can handle 

any ‘GPT-allowable’ response. The GPT source term must be allowable due to mathematical 

constraints outlined in Williams (1986), which in summary expresses the following 

conditions on the adjoint formulation given some response R of the form in Eq. 16: 
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If these three conditions can be met, the response is allowable by GPT and only one adjoint 

and one forward simulation is required in order to predict the change in some response R due 

to input parameter perturbations. 

General GPT evaluations are designed to determine the sensitivity of a response of 

interest, of the form in Eq. 12 to some input parameter of interest, e.g. cross-sections, 

geometry, or composition. Whereas perturbation theory only provides the k-eigenvalue 

sensitivity to input parameters, GPT extends this to GPT-allowable responses in order to 

calculate the response sensitivity profiles of the form in Eq. 17.  
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   R

R
RS α
α

=
∂

∂
	
   (17)	
  

Here, alpha is some general input parameter. The solution of the GPT formulation allows for 

the calculation of the indirect term in evaluating the change in a response due to a change in 

parameters. Consider a response perturbed by a change in the cross-sections which yields a 

change in the state-space (flux) in Eq. 18. 

	
   ( ) ( ), , , , ,R f fR σ σ φ φ σ φ σ φ σ φ σ φ+ = = + +Δ +Δ +Δ Δ Δ Δ Δ+ 	
   (18)	
  

The first term and the cross-section perturbation inner products can be evaluated using the 

forward solution; however, the indirect term including the change in the flux cannot be 

predicted without a corresponding forward simulation for each input parameter. The double 

delta term is dropped in a first-order sensitivity evaluation because the effect is second-order. 

To proceed, consider Eq. 14 with a perturbation in the input parameters introduced, yielding 

a change in the matrices, eigenvalue, and the state-space as in Eq. 19. 

	
   ( ) ( )( ) ( ) 10
k

λ λ φ φ λ+Δ − +Δ +Δ +Δ = =⎡ ⎤⎣ ⎦L L F F 	
   (19)	
  

Recall that Eq. 14 holds, and by rearranging the remaining terms while neglecting second 

order effects (e.g. combinations that include 2 or more delta terms multiplied together), the 

following equation remains: 

	
   ( ) ( )λ φ λ φ λ φ− Δ = Δ − Δ − ΔL F F L F 	
   (20)	
  

Recall the adjoint formulation from Eq. 14, and take the inner product of *φ  with Eq. 20 and 

φΔ  with Eq. 14: 

	
   ( ) ( )* * *, , ,φ λ φ λ φ φ φ λ φ− Δ = Δ − Δ − ΔL F F L F 	
   (21)	
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   ( )* * *, , 1 dR
R d

φ λ φ φ
φ

Δ Δ− =L F 	
   (22)	
  

Recall the property of the adjoint: 

	
   *, ,x y x y=A A 	
   (23)	
  

Combining Eq. 21 and 22 and using the property of the adjoint the following relation for the 

indirect flux term can be formed, allowing the calculation of Eq. 24. 

	
   ( )* * 1, , ,dR
R d

λ φ φ φ λ φ φ
φ

Δ − Δ − Δ = ΔF L F 	
   (24)	
  

The evaluation of response sensitivities as in Eq. 17 is computed in several steps. 

1. The problem adjoint must be constructed. This step is straightforward for 

neutronics, but, Williams (1986) shows that coupling additional physics, such as 

depletion, greatly increases the adjoint formulation complexity. 

2. The source-term for the response must be allowable. This involves an inner-

product check of the source term with the forward solution for the neutron flux. 

3. The adjoint problem must be solved. This requires a software package that 

supports generalized adjoint calculations. 

4. The inner product must be evaluated. 

5. Steps 2 through 4 must be repeated for each response of interest. 

Three fundamental challenges exist in nuclear engineering software that limits or 

prevents GPT calculations: the problem of dimensionality, the cost of implementation, and 

limitations of the modeling philosophies. 1) The dimensionality concern is that an adjoint 

simulation as in Eq. 24 must be evaluated for every response of interest. Consider an 
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arbitrary model with n input parameters and m output responses. There are two common 

modes of determining sensitivity profiles, the forward approach, which is dependent on the 

number of input parameters requiring approximately n calculations of the forward (original) 

model. The adjoint approach, using PT or GPT, is dependent on the number of responses, 

requiring approximately m adjoint equation calculations. The optimal method of evaluating 

sensitivities depends on the ratio of input parameters to output responses and the additional 

time required to solve the adjoint problem. Traditionally the adjoint method has been favored 

by reducing the dimensionality of the outputs via homogenization and model reduction so 

that the number of adjoint calculations is sufficiently fewer than the number of input 

parameters. As models grow in complexity and accuracy, e.g. the modeling of a Gadolinium 

fuel pin in assemblies with a high number of both spatial regions and energy groups, the 

number of output parameters can sufficiently increase such that both m and n is large. In 

these cases, the model is high dimensional and neither scheme, forward or adjoint, is 

immediately optimal. 2) Many software packages used by the nuclear industry perform 

homogenous adjoint calculations, allowing for PT evaluations; however, because of a lack of 

vision, resources, or need, these same software packages do not support the additional 

components to allow for GPT evaluations. In these cases, the software designers and 

programmers are often no longer available to operate or provide advice on the software. 

Furthermore, a lack of documentation and commenting in the source code makes it difficult 

and/or intractable to retrofit these software packages with GPT capabilities. Under these 

circumstances, GPT evaluations are not possible and are not probable in the near future 

despite their heavy use by the nuclear industry. 3) The Monte Carlo modeling philosophy is 
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challenged by the difficulty of accurately and with good statistics providing an adjoint 

methodology. For the Monte Carlo models, a continuous energy adjoint is often difficult to 

achieve with statistically meaningful results if the calculation is even available. Because an 

inner product for the GPT adjoint in a Monte Carlo model is not yet clear, GPT is still 

unavailable for this modeling philosophy. If any of these three challenges can be overcome, 

GPT calculations can be either more available, more accurate, or both. 

 

3.B Perturbation Theory 

 In nuclear engineering, perturbation theory is a special case of generalized 

perturbation theory where the source term, q* in Eq. 14 is zero, allowing for the calculation 

of the k-eigenvalue sensitivities with both a forward and an adjoint calculation (Pomraning 

1966, Pomraning 1967, Stacey 1972, Williams 1986). Because the homogenous adjoint is 

much simpler to calculate, perturbation theory is more widely available in nuclear software 

today. In order to evaluate the sensitivity of the fundamental eigenvalue, fewer steps and 

calculation complexities are required. 

 Consider again the forward and homogenous adjoint transport models in Eq. 25 

	
     Lφ − λFφ = 0 L*φ* − λ*F*φ* = 0 λ = λ* 	
   (25)	
  

First, the eigenvalues for the forward and adjoint calculation must be shown to be equivalent. 

Compute inner products with the forward and adjoint equations: 

	
  
  
φ*, L − λF( )φ = 0 and φ, L* − λ*F( )φ* = 0 	
   (26)	
  

Subtract these two equations and use the property of the adjoint (Eq. 23) to come up with a 

relation between the forward and adjoint eigenvalue: 
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φ*, L − λF( )φ − φ, L* − λ*F( )φ* = 0

φ*,Lφ − λ φ*,Fφ − φ,L*φ* + λ* φ,F*φ* = 0

φ*,Lφ = L*φ*,φ = φ,L*φ*

φ*,Fφ = F*φ*,φ = φ,F*φ*

λ* − λ( ) φ*,Fφ = 0

	
   (27)	
  

Because the inner product *,φ φF is non-negative and usually greater than zero except for 

extreme cases, the forward and adjoint eigenvalues must be equivalent (Williams 1986). 

Expanding the forward model with first order perturbation theory yields the following 

equation: 

	
     Lφ − λFφ( ) + LΔφ − λFΔφ( ) + ΔLφ − λΔFφ( )− ΔλFφ = 0 	
   (28)	
  

From the forward model, the first term is zero. Take an inner product of Eq. 28 with the 

adjoint flux from Eq. 25: 

	
     
Δλ φ*,Fφ = φ*, LΔφ − λFΔφ( ) + φ*, ΔLφ − λΔFφ( ) 	
   (29)	
  

Using the property of the adjoint, the middle term can be shown to be zero from the adjoint 

formulation because of Eq. 25. 

	
  
  
φ*, L − λF( )Δφ = L* − λF*( )φ*,Δφ = 0 	
   (30)	
  

Thus the change in the eigenvalue can be shown to be found using the forward and adjoint 

solution of the flux: 

	
  

  
Δλ =

φ*, ΔL − λΔF( )φ
φ*,Fφ

	
   (31)	
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By calculating once the reference (forward) solution for φ  and additionally one more 

calculation for the adjoint solution  φ
* , the first order change in the eigenvalue can be 

estimated due to changes in input parameters. This capability can be extended to determine 

derivative sensitivities of the eigenvalue to input parameters by a change of variables: 

	
  

  

Δλ = ∂λ
∂α

Δα =
φ*, ∂L

∂α
− λ ∂F

∂α
⎛
⎝⎜

⎞
⎠⎟
φΔα

φ*,Fφ

∂λ
∂α

=
φ*, ∂L

∂α
− λ ∂F

∂α
⎛
⎝⎜

⎞
⎠⎟
φ

φ*,Fφ

	
   (32)	
  

Converting to the system multiplication parameter k: 

	
  

   

∂k
∂α

= −k 2

φ*, ∂L
∂α

− 1
k
∂F
∂α

⎛
⎝⎜

⎞
⎠⎟
φ

φ*,Fφ
	
   (33)	
  

The advantage of this perturbation theory formulation is that the first order calculation of 

eigenvalue changes for an arbitrary number of input parameters can be determined with only 

two simulations, a significant gain over the forward approach. 

 

3.C Monte Carlo GPT and Adjoint Development History 

 Simulation of the adjoint transport equations using the Monte Carlo method has 

conventionally been difficult due to the nature of neutron transport and the problems being 

solved. A brief overview of the literature summarizing the approaches and challenges to 

calculate a Monte Carlo adjoint is provided to explain why GPT calculations using the Monte 
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Carlo philosophy are currently less available. The majority of the literature that pertains to a 

Monte Carlo adjoint, both continuous and multi-group, is limited to the fundamental adjoint 

sometimes denoted the Importance function. Furthermore, the adjoint methodologies to be 

discussed are primarily for fixed-source problems and are thusly not capable of handling 

eigenvalue calculations. Assuming such a continuous energy representation of the 

fundamental adjoint is possible in the eigenvalue operating mode; construction of the GPT-

specific source terms is unclear at best and is a modern topic of research. 

The research and development of the fundamental adjoint has had to overcome 

significant limitations and problems throughout recent years. In 1970 and later in 1975, 

Carter discusses the benefits and limitations of the adjoint Monte Carlo method from the 

integro-differential viewpoint of neutron transport. Two major limitations cited by Carter 

arise from statistical difficulties: First, the adjoint (pseudo) neutrons do not necessarily 

migrate towards the region of interest. Those adjoint neutrons that do make it to the region of 

interest typically have highly varying weights, damaging the statistics of the solution. Highly 

varying weights contaminates the variance due to the difference between the squared mean 

sample weight and the mean of the squared weights: 

	
  
  
σ 2 ≅ 1

N i=1

N

∑wi
2 − 1

N i=1

N

∑wi

⎛

⎝⎜
⎞

⎠⎟

2

	
   (34)	
  

Wagner (1994) cites a similar problem generating the adjoint importance function due to 

statistical limitations using MCNP. Furthermore, the MCNP adjoint multi-group option 

requires pre-model calculations to accurately calculate the source term and response tallies. 

Because of the limitations and considerations, multi-group adjoint calculations are much 
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more complicated than their forward counterpart in MCNP. In contrast to Wagner, Carter’s 

solution to handling of the adjoint source terms requires a complete cross-section library 

revision. Even with this solution, the problem again is the statistical weights of 

pseudoneutrons.    

Hoogenboom expanded on Carter’s approach to reducing the variance of adjoint 

particle weights by showing that the optimal weight function was different from that of 

Carter and McCormick (Hoogenboom 1981); however, this improvement makes the 

sampling scheme problem-dependent and again the problem still requires preparation of 

adjoint cross-sections. Hoogenboom further went on to develop the FOCUS code which 

allowed for continuous energy eigenvalue-mode fundamental adjoint evaluations; however, 

the uncertainty in the response functions increases with each generation, an undesirable trait 

due to a need for a large number of generations to remove higher eigenfunction mode 

contamination. 

An alternative approach, the iterated fission probability concept of the fundamental 

adjoint, was introduced by Hurwitz in 1948, which was later expanded upon with 

collaboration with Ehrlich in 1954 and by authors such as Lewins in 1960. The iterated 

fission probability uses the forward calculation to determine the steady-state neutron flux 

exhibited by original generation neutrons. The advantage of this approach is that no cross-

section processing is required, and the forward model can be modified to provide these 

evaluations without changes to the operators or source terms. The disadvantage to the method 

is again the statistical problem arising from a steady-state flux evaluated for each progenitor 

neutron, requiring significant tracking and populations to provide meaningful results. 
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Furthermore, accurately tracking neutron generations through scattering physics is 

challenging. 

A recent development by Kiedrowski in 2010 expands on the iterated fission 

probability concept to calculate adjoint-weighted tallies measuring point reactor kinetics 

parameters such as the neutron generation time, the delayed neutron fraction, and Rossi-

alpha. This work is being expanded to support general adjoint-weighted tallies of the form to 

calculate the fundamental adjoint sensitivity profile in the latest version of MCNP. From the 

view of the literature, this method has the highest hope for statistically satisfactory adjoint-

weighted tallies that may be developed into a GPT framework for Monte Carlo. 

In review, the adjoint Monte Carlo solution methodology has been approached from 

many avenues via different forms of the transport equation (Carter, Hurwitz, and Ehrlich), 

different approaches to handling the importance function (Carter, Hoogenboom, and 

Eriksson), multi-group approaches (Ehrlich and Wagner), and the general adjoint weighted 

tallies (Kiedrowski). While the literature has many more articles from theses authors and 

colleagues that expand on the various methods, the fundamental objectives typically are 

modifications to the overall method for improved statistics, i.e. variance reduction biasing 

schemes. While significant advances have been made for fixed-source problems, the ability 

to calculate GPT inner-products using a continuous energy Monte Carlo adjoint is currently 

unavailable, with the best hope being expansions on Kiedrowski’s methodology. As the 

ability for a k-eigenvalue sensitivity profile is within reach by Kiedrowski, there is 

motivation to employ the GPT-Free methodology to evaluate GPT style responses. 
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3.D Reduced Order Models 

 Modeling of physical phenomena oftentimes results in very complicated 

mathematical systems. While these models may faithfully represent the underlying physics or 

behavior of a physical system, their practical use may be limited by computational limitations 

or by needs for repeated execution. In these circumstances, reduced order models (ROM) are 

generated for the purpose of making a calculation feasible or expediting calculations for 

repeated model execution. In general, a ROM attempts to replicate the results of a higher 

fidelity model with less complicated systems that are often easier and/or quicker to solve. 

With modern engineering calculations becoming larger, involving more than millions of 

inputs and/or equations there is a significant need for model order reduction.  

Historically, reduced order models have always been present in the sciences when 

attempting to model physical phenomena. First-order perturbation theory (PT) which has 

been around for centuries is a common example of forming a reduced order model of a 

system about some reference point. Truncating all terms after the first order derivative of a 

Taylor series expansion provides a linear representation of phenomena that is often easier to 

study. Similarly the classical equation of motion can be thought of us a ROM for the 

relativistic motion equations when the velocity is much less than the speed of light, v << c 

(which is true for everyday physical phenomena at the macroscopic scale). Reduced order 

models received renewed attention with the development of computing power starting at the 

end of the 20th century. As computing power increases, it is possible to solve larger and more 

complicated physically phenomena. While individual simulations of large-scale computing 

problems may be feasible, analysis of behavior requiring repeated model execution may 
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make these large-scale models intractable, hence the need for a ROM. Specific to nuclear 

reactor calculations, a full-core Monte Carlo particle simulation of a nuclear reactor can be 

completed with significant computational resources; however, repeat execution of the model 

is intractable for design purposes and thus the need for a ROM is present. 

There are a plethora of ROM construction philosophies in the literature (Schilders 

2008, Cacuci 2003); however, these can be condensed to approximately three methodologies 

in the physical sciences. The first methodology attempts to reduce model dimensionality by 

fitting input parameters and output responses to some user-defined function and is denoted 

response-surface modeling. While response surface modeling need not form a reduced order 

model, the methodology is often used in engineering for this purpose. An example of 

response surface modeling is fitting perturbations of a model function to a first-order 

derivative model where the original model and resulting reduced model can be viewed in 

Eqs. 35 and 36. 

	
  

  

f α0 + Δα( ) = f α0( ) + ∂ f
∂α α0

⎛

⎝
⎜

⎞

⎠
⎟ Δα + ∂2 f

∂α 2
α0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Δα 2 +… 	
   	
  (35)	
  

	
  

  
f α0 + Δα( ) ≈ f α0( ) + ∂ f

∂α α0

⎛

⎝
⎜

⎞

⎠
⎟ Δα 	
   (36)	
  

The concept can be generalized to many outputs and many responses; however, additional 

notation would be required to describe the resulting tensors. For an overview of response-

surface modeling applied to reduced order models, see Schilders (2008) for a list of 

references and examples.  
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The second methodology involves a physics-based reduction of the model. Typically 

these reductions are for physical and semi-empirical partial differential equations. Some 

examples in the nuclear field include the diffusion approximation of transport as in Eq. 37, 

the assumption for isotropic scattering in transport (Eq. 38), Quasi-static depletion in Eq. 39, 

and point-reactor kinetics, Eq. 40 (Bell 1970, Williams 1986, Allen 1975, Lamarsh 2001). 

	
     ψ r,Ω, E,t( ) → φ r, E,t( ) and J r, E,t( ) 	
   (37)	
  

	
  
  
Σs E '→ E,Ω→Ω '( ) → 1

4π
Σs E '→ E( ) ≈ Σs E '→ E,Ω→Ω '( )dΩ

4π
∫ 	
   (38)	
  

	
  
   
L Σ(t)( )φ t( )− 1

k t( )F Σ(t)( )φ(t) = 0 → Liφ ti( )− 1
ki

Fiφ ti( ) = 0 	
   (39)	
  

	
     Σ r,t( ),ρ t( )→ Σ t( ),ρ t( ) 	
   (40)	
  

The third methodology attempts to reduce the model dimensionality by reducing the 

spaces of the problem be it the input parameter space, output response space, or the state-

space of a system (e.g. temperature or flux). Consider a linear model with n input parameters, 

a state-space of dimension w, and m output responses. Reduction of the dimension of any of 

these three spaces can reduce problem complexity by restricting some space to the r most 

important directions. For example, consider a model in which the user desires to perturb 

input parameters one at a time according to a sensitivity analysis. Reduction to the r most 

important input parameters will save n – r simulations at some cost to the accuracy for 

reducing the calculation complexity, which can be denoted the reduction error. 
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For the purpose of comparing the methodologies, consider a state equation Π  with 

input parameters σ  of dimension n, state space φ  and m general response functionals 

denoted by Ri for all i. 

	
  

  

Π σ ,φ( ) = 0

Ri = φ,σ
	
   (41)	
  

Consider first the response surface model. For example, a user wishes to understand the 

effect of input parameter perturbations on the model in Eq. 41 by constructing a first-order 

sensitivity model relating output responses to input parameters. The resulting relationship 

forms an m by n Jacobian matrix as in Eq. 42: 

	
  
  
ΔR = JΔσ J xy =

ΔRx

Δσ y

	
   (42)	
  

The reduction occurs because higher-order terms are removed as in Eq. 35, simplifying to 

Eq. 36. Furthermore, the user need not consider all responses or input parameters such that 

the Jacobian, J may be significantly smaller than m by n. Another example of response-

surface modeling is polynomial chaos (Gentle 2009, Le Maitre 2004, Schilders 2008) as 

shown in Eq. 43, where higher-order terms are considered in an efficient manner.  

	
  
  
f σ( ) =

i=0

r

∑
k

ni

∑βikφik σ( ) 	
   (43)	
  

Similarly, response surface modeling is used in perturbation theory and generalized 

perturbation theory to relate first and second order derivatives of system properties to input 

parameters. The resulting short-hand model provides the ability to quickly estimate responses 

of interest without re-execution of the simulation for each test case (Cacuci 2008). 
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 The second methodology attempts to rewrite Eq. 41 by simplifying underlying 

physics. Consider the following representation for Π : 

	
     Π σ ,φ( ) = 0 ≡ L σ( )φ − λF σ( )φ = 0 	
   (44)	
  

Approximations could be introduced to convert the system to diffusion such that directional 

terms are removed in L. Alternatively, thermal scattering could be removed to change the 

shape of L so that it is triangular by removal of upscattering as in Fig. 7.  

 

 

Figure 7: L matrix construction with upscattering terms marked by the red portion of the 
matrix. 

 

Alternatively, the model could be homogenized so that the spatial and energy regions in L 

and F are reduced, thus directly reducing model dimensionality. The errors for the latter two 

methods can be viewed as in Eqs. 45 and 46. When removing upscattering in thermal 
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systems, the shape-function introduces a distortion to the state-space and the associated 

eigenvalue. Homogenization will produce similar effects, but the residual an integral 

comparison. 

	
       L −Lth( ) !φ − λ F( ) !φ = 0 r = φ − !φ 	
   (45)	
  

	
  

   
LHφH − λFHφH = 0 rij = dE

ΔEi

∫ dr3φ r, E( )−φH i, j( )
ΔVj

∫ 	
   (46)	
  

The removal of angular physics with the Diffusion approximation and the 

homogenization of the system directly reduces the dimensionality of the model at a sacrifice 

to accuracy. The removal of certain physics such as thermal upscattering does not change the 

dimensionality of the model but does reduce the complexity of obtaining a solution and by 

extension, the time to compute, thus reducing the time-cost at a sacrifice to accuracy. Other 

reductions include a reduction in spatial dimension from 3D to 2D and 1D depending on the 

problem symmetry (Duderstadt 1976, Bell 1970, Stamm’ler 1983). These schemes reduce the 

computationally complexity such that either a problem can be solved more quickly or a more 

complicated problem can be solved that may otherwise have been computationally 

intractable. 

 Consider again Eq. 41 with the intent to reduce model dimensionality by reducing the 

spaces of the problem. Similar to homogenization, a simple reduction in numerical quantities 

such as the number of mesh divisions in space, energy, or angle can reduce model 

dimensionality at a sacrifice of accuracy; however, there are techniques that can, without 

making the model numeric coarser, reduce model dimensionality. The input parameter space 

of dimension n could be restricted to some basis selected a priori or a posteriori with 
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dimension r where r is less than n. As long as the new basis does not significantly change the 

state-space or responses of interest, a ROM with a reduced dimensionality basis is feasible. 

An example of when this is possible is systems with high degrees of correlation among 

inputs, or systems where many inputs do not significantly contribute to the solution of the 

problem. Reduction of the input space is favorable when interested in completing a forward 

sensitivity analysis procedure as the calculation complexity reduces from n to r. Consider the 

simple example of a fast reactor system, the input space can effectively be reduced by 

removing the consideration of thermal cross-sections that do not contribute to the solution. 

The goal, however, is to automatically select components that are unimportant to be removed 

from the system. 

State-space reduction attempts to restrict the model based on possible combinations 

of the state-space. For eigenvalue problems, any reduction in the state-space directly affects 

the model complexity and allows directly for reductions in the input and output spaces. For 

nuclear engineering problems, the flux (state-space vector) often has a much lower 

dimensionality than the number of mesh points in a problem, allowing for this sort of 

reduction. Additionally, any state-space reduction can be projected onto the eigenvalue 

matrices to constrain the model to a set of possible states. 

Output space reduction methods constrain responses to a specific basis. Similar to the 

input space projections, the output space could be reduced from dimension m to dimension r 

based on the physics of the model. Typically the output response basis is selected a posteriori 

unless the responses are known to behave in a certain manner. Reduction of the output space 

is ideal for adjoint methodologies and for correlated outputs. Linear algebra principles can 
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estimate the dimensionality of a linear model using subspace methods or rank determination 

methods acting on the model. 

Restating, the input and output space reduction methods attempt to restrict these 

vectors to a lower dimension by elimination or change of variables such as a basis transform. 

Consider a perturbed model  Θ σ 0 + Δσ( )with n inputs, where only a subset of the inputs 

yield a change in the response: 

	
  

  

Θ σ 0 + Δσ( ) ≡ Θ σ 0 + Δσ ||( ) = φ0 + Δφ

and
Θ σ 0 + Δσ ⊥( ) = φ0

where Δσ = Δσ || + Δσ ⊥

	
   (47)	
  

 
The orthogonal perturbations yield no change in the model. If the parallel input terms are 

much lower dimension then the input space n, a ROM could be formed such that 

perturbations are constrained to the reduced input space of dimension r. Consider a projector 

P that represents input space of dimension r, the model can be rewritten to: 

	
  

    

!σ = PTΔ !σ
Θ σ 0 + PPTΔσ( ) ≡ Θ σ 0 + P !σ( ) = φ0 + Δφ

	
   (48)	
  

 
According to Eq. 48 the model now is determined by the r inputs represented by  !σ . These 

schemes may be considered projection schemes (Schilders 2008, Gentle 2009, Abdel-Khalik 

2004, Meyer 1999). Similar considerations can be made with an adjoint model to reduce the 

output space. ROM methods that operate on a reduced basis come up with the same effective 
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end result; however, the means to obtain the reduced basis differ depending on the physics 

and the approach chosen. 

 

3.D.2 Subspace Methods 

 Subspace methods take advantage of correlations in high dimensional models via 

automatic a posteriori selection of basis functions, the foundations for a ROM. From linear 

algebra, the rank of a matrix (here representing the model or model ROM) can be determined 

by taking the inner product with linearly independent vectors and using a rank-revealing 

decomposition such as SVD or QR on the set of resulting vectors. Gaussian random 

perturbations are used to explore the spaces of a model due to satisfaction of randomness 

while maintaining superior orthogonality versus uniform random number distributions as 

shown in Fig. 8: 

Consider a forward and adjoint model: 

	
  

 

Π σ ,φ( ) = 0 Π σ + Δσ ,φ + Δφ( ) = 0

Π* σ ,φ*( ) = 0 Π* σ + Δσ ,φ* + Δφ*( ) = 0
	
   (49)	
  

Perturbations introduced into the model exact a change on the state-space in both the forward 

and adjoint model. Replacing this model with some arbitrary model that can be represented 

by a matrix,Θ Δσ( ) = Δφ , the spaces of the model represented by Θ can be explored. 

Consider a matrix G of dimension m by n with rank r << min(m, n), and two Gaussian 

random matrices U of dimension  n× p  and V of dimension  m× p  where p > r  where: 
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GU = R(G) = Y
GT V = R(GT ) = X

	
   (50)	
  

 
In this representation,R denotes the range of the matrices G and GT. The rank of the right 

hand product can be at most r. A rank revealing decomposition such as QR or SVD will 

extract r basis vectors from Y and X. The basis vectors from Y form a basis for the output 

space in G or loosely Θ . Similarly the basis vectors from X form a basis for the input space 

in G or similarly Θ . 

 

 

 

Figure 8: Singular value decomposition of two types of random matrices of dimension 
1000x1000. A set of orthonormal vectors would be indicated by a flat horizontal line along y =1. 
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Using the properties of a linear algebra, any basis can be represented by another in a linear 
space. 

	
  
  

Δσ i = Xra i

Δφi = Yrbi

	
   (51)	
  

Such that once these basis are found of reduced dimension r, a change of basis or variables 

can be introduced to form the ROM. 

 One of the most prominent benefits of subspace methods is that the nature of 

Gaussian random perturbations or any orthogonal full-vector perturbation fully probes the 

system spaces. This means that only r runs are required to extract the basis as opposed to n or 

m runs using a standard approach of perturbing a single input/output at a time. Additional 

runs do not provide additional information about the basis and are only useful for 

determining stopping points if an appropriate error stopping metric is not used. This feature 

makes subspace methods extremely powerful compared to other methods where a basis is 

chosen before-hand or chosen according to some algorithm or Krylov subspace. In scenarios 

where there is not much reduction available or small reducible systems, subspace methods 

become less attractive. 
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4. GPT-FREE SENSITIVITY ANALYSIS 

4.A GPT-Free Fundamentals 

 The dimension of nuclear engineering models is continuously increasing, making a 

sensitivity analysis (SA), in either the forward or adjoint mode, computationally expensive. 

Additionally, the generalized adjoint requires generalized perturbation theory (GPT), a 

construction that is often unavailable due to computational complexities and may be cost-

prohibitive to implement into software. As a result, design calculations that require repeated 

execution may be less efficient, and some analysis cannot be completed in a reasonable 

amount of time with the desired level of accuracy. To address concerns where GPT is 

unavailable and/or for models with high-dimensionality, the GPT-Free approach has been 

developed in order to obtain sensitivity information in a computationally efficient manner. 

The objective of the GPT-Free approach is to generate a reduced order model (ROM) 

using the fundamental (homogenous) adjoint that can calculate in a computationally efficient 

manner the variations or gradients (sensitivities) of all output responses generated by the 

model resulting from perturbations in all model input parameters. This is to be completed 

using classical perturbation theory (PT) and avoiding both the construction and the solution 

of the GPT equations. Classical PT requires only the execution of the forward model and the 

adjoint model for the homogenous eigenvalue problem. With the response sensitivities from 

GPT-Free, design optimization, uncertainty quantification, data assimilation, or other 

engineering tasks can be completed that may otherwise be computationally intractable or 

unavailable. 
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 The GPT-free approach is based on the observation that the system multiplication, k, 

can be written as an unknown function of the flux, φ  (the state-space of a neutronics 

calculation). 

	
    k = f φ( ) 	
   (52)	
  

 
Because most responses of interest to the nuclear engineer involve an inner product with the 

flux, the equation can be rewritten as a function of m arbitrary response functionals. 

Alternatively, the responses of interest can be taken as the flux, where m is the number of 

spatial and energy regions cells in the model.  

	
     k = f R1…Rm( ) 	
   (53)	
  

The responses are defined as an inner product between the flux and the cross-sections. 

	
     
R = R σ ,φ( ) 	
   (54)	
  

This response functional expression can be extended to account for more general responses, 

e.g. bilinear ratios of responses:  

	
     
R = R σ 1,φ , σ 2 ,φ ,…, σ m ,φ( ) 	
   (55)	
  

Since the flux is a function of model parameters, both the system multiplication k and the 

responses are also expected to depend on the input parameters. For this work, the input 

parameters of interest are the nuclear cross-sections. The responses include multi-group 

fluxes and reaction rates at various spatial locations in the given model.  

Differentiate Eq. 53 with respect to the microscopic cross-sections to obtain gradient 

information or the sensitivity profile for k: 
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dk
dσ

=
i=1

m

∑ ∂k
∂Ri

dRi

dσ
	
   (56)	
  

 
In this representation, the left hand side of the equation is a gradient or sensitivity profile of 

the k-eigenvalue. The sensitivity profile for k is with respect to the isotope, energy group, and 

reaction specific microscopic cross-sections. The right hand side of the equation is a linear 

combination of weighted response sensitivity profiles, idR dσ . The weighting terms, ik R∂ ∂ , 

are scalar quantities representing the derivative of k with respect to the ith response, which is 

expected to be a nonlinear function of cross-sections, composition, and geometry. Equation 

56 implies that the k-eigenvalue sensitivity profile can be written as a linear combination of 

all response sensitivity profiles. 

It can be shown with first order accuracy that an input parameter perturbation 

orthogonal to arbitrary response sensitivity yields no change in the response (Kennedy 2012). 

	
  
  
ΔRi = Δσ T dRi

dσ
⎛
⎝⎜

⎞
⎠⎟
= 0 if Δσ ⊥

dRi

dσ
⎛
⎝⎜

⎞
⎠⎟
	
   (57)	
  

Each response sensitivity profile in the summation for the k-eigenvalue sensitivity profile in 

Eq. 56 represents an input parameter direction that changes a system response. If one can 

show that the sensitivity profiles for all responses span a subspace of size r << n, the number 

of inputs, a ROM could be constructed to restrict input perturbations along a basis of 

dimension r§. If r is relatively small, one could employ a forward rather than an adjoint 

sensitivity analysis to calculate response variations and/or sensitivities. The subspace 

relationship for Eq. 56 and Eq. 57 is shown graphically in Figure 9. 

                                                
§ For more on the math of subspaces, bases, and low-rank matrices as it pertains to ROM, consult Meyer (1999). 
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Figure 9: Visual demonstration of Subspace approach to GPT-Free ROM formation. 1) Cross-
section and number density perturbations yielding various sensitivity profiles. 2) The span of 

the set of sensitivities form a subspace Q. 3) Relationship of Eq. 56 demonstrating that response 
sensitivities exist in the same subspace. 4) Restriction of input parameters to the subspace Q for 

responses as in Eq. 57. 
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 At a first glance, it might appear counter-intuitive that the input parameters space 

represented by cross-sections can be reduced significantly. Success and experience with few-

group cross-section models for modeling real reactors demonstrates that the cross-section 

data can be reduced at least in energy (Stamm’ler 1983). Furthermore, recent research 

(Kennedy 2011, Abdel-Khalik 2011, Kennedy 2012) has demonstrated that flux variations 

generated from all possible cross-section perturbations can be accurately represented by a 

subspace. To identify this reduced order model subspace, a result from linear algebra (Meyer 

1999, Golub 1996) is employed – that is any subspace can be represented by an alternative 

basis. 

 Construction of the ROM basis requires the k-eigenvalue sensitivity profile to change 

in order to construct the spanning set. The most straightforward manner to introduce changes 

into the sensitivity profile is to introduce perturbations into the cross-sections and nuclide 

number densities to change the weighting factors,  ∂k ∂Ri , from Eq. 56 and thus stimulate the 

various response sensitivity profiles. As these perturbations are introduced, the eigenvalue 

sensitivity profiles can be collected and a new basis can be formed. A straightforward 

question is how many perturbations are required until a sufficient input basis is found? 

 A range-finding algorithm (RFA) is required to determine stopping criteria for the 

input basis. A tolerance error metric, denoted the κ-Metric (Kennedy 2011), is explained in 

later sections in detail, but in brief summary, the input perturbations continue until the input 

model basis sufficiently describes the system response to some user denoted tolerance. 

 Consider a steady-state neutronics model and a response functional: 
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Π φ,σ( ) = 0

R = φ,σ
	
   (58)	
  

The flux, φ , which is the state-space in the state equation, is dependent on both input 

parameters and problem geometry. The response may be either global or local over some 

region of the reactor. Examining some response of interest, consider a first order 

perturbation: 

	
     ΔR = R σ 0 + Δσ ,φ( )− R σ 0 ,φ( ) 	
   (59)	
  

Restricting this response to some input subspace, Q with rank r: 

	
      
ΔR = R σ 0 +QQTΔσ( )− R σ 0( ) 	
   (60)	
  

If the subspace represented by Q is sufficiently small for all responses, then response 

sensitivities could be calculated for the r input directions according to Q by running a 

forward sensitivity analysis. GPT-Free attempts to obtain a ROM based on automatic basis 

reduction. 

 Consider a set of p k-eigenvalue sensitivities formed from running the forward/adjoint 

model using cross-sections of dimension n, corresponding to the isotope, reaction, energy 

specific microscopic cross-sections, perturbed independently from a Gaussian distribution. 

Collect the set of p sensitivity profiles into a matrix    Z∈!n× p  to form Eq. 61. 

	
  

   
Z = dk

dσ 1

dk
dσ 2

… dk
dσ p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	
   (61)	
  

 
Consider a matrix R of response sensitivities with m columns and a vector of weighting 

factors, w. The matrix Z can be represented by R and the inner product of various w. 
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   (62)	
  

 
If the rank of Z is sufficiently small, the rank of R is likewise small, and a subspace Q can be 

determined from Z to form a reduced order model for the inputs. Consider a matrix Q as 

determined from the SVD of Z, where the first r columns of U, denoted Q, represent the 

range of Z:  

	
  

     

Z =
Q

UN

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Σ r 0

0 ΣN

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Vr
T VN

T⎡
⎣

⎤
⎦ Q = R Z( )∈!n×r 	
   (63)	
  

This can be shown when considering the effect of a cross-section perturbation on the 

transpose of Z: 

	
  
   

Z*i( )T
Δσ = Δki = dk

dσ
⎛
⎝⎜

⎞
⎠⎟ i

T

Δσ = Δk 	
   (64)	
  

If the range of Z is sufficiently small, it may be computationally efficient to complete a 

forward sensitivity analysis along the first r directions of Z which is represented by Q as 

determined from a rank-revealing decomposition such as the QR or SVD**. In order to meet 

this objective, a sufficient estimate for the rank of Z must be available. To do this, a subspace 

termination criterion is required. 

 

 

                                                
** For more on rank revealing decompositions such as SVD or QR, see Meyer (1999). 
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4.B Subspace Termination Criterion: κ-Metric 

Accurate determination of the effective rank of a ROM is a prerequisite for the 

practical application of the GPT-free approach. Past work has primarily employed an 

engineering judgment type approach based on trial and error for rank determination 

(Kennedy 2011, Abdel-Khalik 2011).  In particular, a truncated SVD (Meyer 1999) approach 

was employed where the rank is determined such that reconstruction error for the response of 

interest is less than some user-defined or response target accuracy. The rank is increased until 

the target accuracy is reached. For the purpose of a rigorous method, a new more detailed 

approach has been constructed in this dissertation. 

Consider an arbitrary response metric where some response vector, f, is compared to 

the reference value f0: 

	
     κ = f − f0 	
   (65)	
  

In engineering applications, a tolerance or criteria can be set such that κ can be sought to be 

less than some defined value Ú. 

	
  
   κ =

def

f − f0 ≤ ε 	
   (66)	
  

 

For any reduced order model Θ , one can assume that the output has some expected value y  

and some associated error distribution e given inputs x: 

	
    Θ x( ) = y + e 	
   (67)	
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Here the vector e  could be a normally distributed error vector with some possibly unknown 

standard deviation ς . It is possible that with a single realization of the model the metric can 

be met as an outlier of Θ . When the underlying distribution for e  is unknown (as often is 

the case for a ROM), a single measure of Θ  is even riskier to trust for some metric as 

defined in Eq. 66. To visualize this effect, consider Fig. 10. In this figure a ROM is 

considered based on true model evaluations with a specified error tolerance bound. 

 

 

Figure 10: A comparison of a hypothetical model and an associated ROM with some error 
tolerance. 

 

If a single evaluation had been taken from the ROM it is likely to have been considered to be 

satisfactory. In order to reduce the risk of a ‘false positive’ acceptance of a ROM, an 

approach based on Wilks’ order statistics has been applied to metrics of the form in Eq. 66 to 

provide better evidence that a ROM meets the specified tolerance. 

ROM

True	
  Model	
  
Evaluations
Error	
  Tolerance
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Wilk’s order statistics allows one to assign a tolerance interval for a response of 

interest and a probability for meeting this tolerance given an unknown distribution (Wilks 

1941). The only practical requirement for Wilks’ order statistics is that the underlying 

distribution is continuous and samples from the distribution are random. Exceptions that 

violate this criterion could be an ROM where the software does not run, an illegal operation 

contaminates the data to result in NaN or zero, or a non-physical output occurs near local 

points in the space of evaluation. By arguments given prior for a reduced order model, this is 

typically satisfactory with nuclear engineering calculations. Given some ROM and some 

metric, the minimum number of samples for some confidence in the metric can be 

determined from Wilks’ formula (Wilks 1941, Strydom 2011): 

	
     (1− pN )− N (1− p) pN−1 ≥ c 	
   (68)	
  

 
where p is the probability percentile, N  is the number of samples, and c is the confidence. 

The κ-metric is defined as a measure of the accuracy of the ROM of dimension r.  To 

evaluate the rank of a model using this metric, reform Eq. 66: 

	
  
   
κ c =

def

fi − f0 ≤ ε{ }
i=1

n
Accept if at least pn( ) pass 	
   (69)	
  

Here Eq. 69 requires pn of n samples to meet the tolerance and provides a confidence c in the 

estimate of the metric. In summary, the  κ-metric tests the error between the ROM and the 

true model by sampling the error e in Eq. 67 and using the property of Wilks’ order statistics 

to make engineering claims based on the resulting distribution of e in the form of Eq. 69 

(Halko 2009, Wilks 1941). 
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 For the purpose of GPT-Free, three metrics are of given as examples for construction 

of a ROM from sensitivity data. Global responses, k and φ , are used for determining the 

ROM rank. The κ-metric for the k-eigenvalue is straightforward and best viewed in units of 

pcm where the tolerance is set at or near the convergence criteria for k: 

	
  

    

κ = 105 ×
k − k0

k0

|pcm|
! "# $#

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≤ εtol 	
   (70)	
  

For vector quantities such as the flux, two different metrics have been utilized in this 

technical report. The first is a 2-norm metric normalized to the number of cases n. The 

second is an absolute average error metric visualized for each test case. They are defined as: 

	
  
  
κφ1 =

1
n
φ −φ0

φ0 2

	
   (71)	
  

	
  

  

κφ2,i =
j∈ρx

∑ φij −φ0 j

j∈ρx

∑φ0 j

≡ j∈ρx

∑ Δφij

j∈ρx

∑φ0 j

	
   (72)	
  

 
These metrics can also be normalized to a set of reference perturbation cases; however, the 

same result is obtained if the engineering tolerance is properly defined/scaled to the accuracy 

of the convergence criteria in the software or to some output response of interest. 

 While these metrics have been defined, a metric can be defined for any response of 

interest. Using this metric, any response error can be quantified in this manner. Consider a 
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response for a single-group fission cross-section for U-235, the error in the model could be 

estimated similarly for some selected ROM: 

	
  

   

κ = σ! f −σ f 0 ≡ g=1

G

∑ "σ f ,g
j∈ρx

∑φ j ,g

g=1

G

∑
j∈ρx

∑φ j ,g

− g=1

G

∑σ f ,g
j∈ρx

∑φ0 j ,g

g=1

G

∑
j∈ρx

∑φ0 j ,g

	
   (73)	
  

 
From this evaluation with some given ROM, an estimate in the error for this response for all 

simulations can be predicted. This capability is important because once an ROM is selected 

using the metrics for φ  and k, all responses will have some inherent errors due to model 

reduction, regardless of the model/approximations used for sensitivities. 

In review, The κ-metric represents the absolute error in the response of interest 

resulting from constraining input parameter perturbations to a subspace. An upper bound on 

this metric could easily be set since target accuracy requirements are often available for the 

responses of interest. 

 
4.C GPT-Free Algorithm 

 
4.C.1 ROM Construction 

 Consider a model that calculates the k-eigenvalue sensitivities with respect to l 

nuclides, h reaction types, and g groups. Define the k-eigenvalue sensitivity vector z  as: 

	
   	
  

	
  
  
z ∈n = l×h×g( ) → z = ∂k

∂σ
	
   (74)	
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where n is the total number of cross-section types in all groups and for all isotopes and 

reactions. Now, introduce random Gaussian perturbations, uniquely for each nuclide, 

reaction, and energy group, into the cross-sections to construct iσΔ , and re-evaluate the k-

eigenvalue sensitivity vector: 

	
   	
  

	
  

  
zi =

dk
dσ σ 0+Δσ i

	
   (75)	
  

	
   	
  

The subscript i refers to the ith cross-sections perturbation. Notice that as implied by Eq. 56, 

the vector iz  is a random linear combination of the unknown responses sensitivity vectors. 

Next, repeat this process p times, and construct a matrix: 

 

	
  
    
Z∈!n× p = z1 … zi …zp

⎡⎣ ⎤⎦ 	
   (76)	
  

 
In this process, p is increased until an effective rank for the matrix Z is reached. An effective 

rank implies that the matrix Z could be approximated by matrices of lower dimensions such 

that the maximum discrepancy between the original matrix and the approximation does not 

exceed a user-specified tolerance. We employ here the rank-revealing singular value 

decomposition (SVD) of the form: 

	
       Z ≈ UrWrVr
T → Wr ∈!

r×r  and  Ur ∈!
n×r 	
   (77)	
  

 
The rank r is considered an effective rank for the matrix Z when the κ-metric for k and φ  is 

satisfied using the input space defined by the first r columns of Ur. The implication of this 
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decomposition is that instead of having n input parameters that can change the response, only 

a small number r, represented by the columns of the matrix Ur is shown to capture all 

possible variations of the responses to a given tolerance.  

Consider the governing equation for the flux: 

	
    Π σ ,φ( ) = 0 	
   (78)	
  

where σ  denotes all cross-sections. Write the response of interest as a linear function of the 

flux: 

	
     R = φ,σ 	
   (79)	
  

Without loss of generality, the discussion below will focus on a single response, as implied 

by Eq. 79, to simplify the resulting expressions. The procedure however is applicable to all 

model responses that are described as functions of the flux. The ROM is given by: 

	
      
Π σ 0 + UrUr

TΔσ ,φ( ) = 0 	
   (80)	
  

	
      
R = φ,σ 0 + UrUr

TΔσ 	
   (81)	
  

This representation implies that the cross-sections are constrained to vary along a subspace 

that is spanned by the columns of the matrix Ur. This reduces the effective number of 

parameters to r, where now each effective parameter represents a perturbation of all cross-

sections along one of the columns of the matrix Ur.  

 To test this ROM with rank r, the n – r columns of U are used to construct 

perturbations that, according to the ROM under scrutiny, will yield no change in the system: 

	
  
   
Π σ 0 + I − UrUr

T( )Δσ ,φ( ) ≈ Π σ 0 ,φ( ) 	
   (82)	
  

	
  
   
R = φ,σ 0 + I − UrUr

T( )Δσ ≈ R = φ,σ 0
	
   (83)	
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The metrics of interest are those as described by Eq. 70-72.  The procedure is described as 

follows for some rank estimate r for Z: 

1. Using Eq. 68, determine N given (p, c) 

2. Generate N random Gaussian input parameter perturbations    
Δσ i{ }i=1

N
 

3. Calculate the orthogonal components:    
Δσ i

⊥ = I − UrUr
T( )Δσ i i = 1…N  

4. Execute the model n times to obtain k and φ  

5. Calculate the κ  metric for k and φ  according to Eq. 70-72. 

6. Determine the number of times M in which the metric is outside the user-defined

 confidence interval. 

7.  If  M > N (1− p) , then the estimated rank is insufficient to meet user-defined 

accuracy requirements. Increase the rank by increasing the dimension of p and Z, and 

return to step 3 with an updated rU . 

 

The remaining n – r vectors which span the rest of the space are assumed to have a negligible 

impact on the model state-space and response-space.  Once this ROM has been generated 

that meets the criteria of the  κ  metric for some rank r, the first r columns of U represent the 

input space, effectively a reduced basis ROM along which a forward sensitivity analysis can 

proceed. 
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4.C.2 Sensitivity Analysis Procedure 

This subsection describes how the ROM is used to produce sensitivities of the 

responses using a forward sensitivity analysis approach. First re-write Eq. 81 in a compact 

form recognizing that the flux variations depend on the cross-section variations: 

	
      
R = R σ 0 + UrUr

TΔσ( ) 	
   (84)	
  

This representation ensures that cross-section variations that are orthogonal to the columns of 

the Ur matrix do not change the responses; hence they need not be perturbed when employing 

a forward sensitivity analysis. This could be achieved by defining a set of r pseudo (denoted 

earlier as effective) input parameters defined by: 

	
     x i = ui
TΔσ 	
   (85)	
  

This equation implies that by perturbing the ith pseudo input parameter, all cross-sections are 

perturbed along the direction iu . Rewrite Eq. 84 as: 

	
      R = R σ 0 + Urx i( ) 	
   (86)	
  

This equation states that the response of interest is a function of r pseudo input parameters. If 

r is small, one could employ a forward sensitivity analysis instead of a GPT-based adjoint 

sensitivity analysis to determine the first order derivatives of the response with respect to the 

pseudo input parameters. And since the relationship between the pseudo input parameters 

and original input parameters is linear, as given by Eq. 85, one could back-calculate the 

responses derivatives with respect to the original input parameters using the chain rule of 

differentiation.  
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 Some measure of caution must be taken when using the chain rule to determine 

sensitivities of the original cross-sections. The numerical limitations of this chain rule must 

be considered: columns of U span orders of magnitude that easily exceed single-precision 

and sometimes can push the limits of double precision. Because cross-sections in the SCALE 

code are stored in single-precision, some sensitivities are filtered out in the forward 

calculation. This result is desirable, because they will not contribute to a change in the result; 

however, when using the chain-rule, these low importance sensitivities return as noise near 

the numerical limits of the sensitivity analysis. Consider by means of an example of Figure 

11 for a 44 energy group model. In this figure, any sensitivity components in the intermediate 

to fast energy ranges will effectively be filtered out. A change in the model will likely be 

observed due to the magnitude of the thermal regions of this hypothetical column of U. 
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Figure 11: A hypothetical column of Ur for a single isotope-reaction. The numerical limits for a 
single-precision cross-section perturbation of magnitude 5% is included for comparison.  

 

However, consider that the sensitivity information for intermediate and fast ranges (groups 1 

to 20) will not change the model: the actual sampled sensitivity is the set of plus markers in 

the figure. The problem then arises in situations as in Figure 12: 
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Figure 12: A hypothetical column of Ur for a single isotope-reaction. The numerical limits for a 
single-precision cross-section perturbation of magnitude 5% is included for comparison. 

 

 In Figure 12, the observed change in the model is likely to be small; however, due to 

Gaussian sampling, some samples may bleed along the lines of the numerical tolerance 

causing sensitivities for energy groups 15-20 and 26-30 to lack fidelity. When these 

appropriate sensitivities are back-calculated using the chain-rule, their noise will contaminate 

nearby data for energy groups 20 – 25. Effectively, only the largest sensitivities can be 

accepted; even though the ROM may suggest numerical tolerance is achievable to a certain 

level, the sensitivity analysis, in its current form, has numerical limitations that must be 
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considered. To avoid this problem, the best solution is instead to use sensitivities in the form 

of U instead of back-calculating to the original cross-sections. 

The literature is replete with many techniques that can be employed to conduct a 

forward sensitivity analysis (Cacuci 1980). We employ a regression-based approach in this 

work. The idea behind regression techniques is fairly simple: first, one assumes a regression 

surface that approximates the relationship between the responses of interest and input 

parameters; the surface has a number of undetermined coefficients that can be related to the 

response derivatives; second, the forward model is executed a number of times that is greater 

than or equal to the number of unknown coefficients to render a well-posed problem; finally, 

the method of least-squares is employed to determine the coefficients (Seber 2003, Bates 

1988).  

The primary source of error in this approach lies in the choice of the regression 

surface. Given that we are primarily interested in first-order derivatives evaluated locally 

around some reference values for the cross-sections, a linear regression surface is employed 

with all cross-sections perturbations employed to generate the coefficients small enough to 

ensure the linearity approximation is valid. The surface selected is given by: 

	
   	
  

	
  
  
ΔR = ∂R

∂xi

Δxi
i=1

r

∑ 	
   (87)	
  

where  ∂R ∂xi  is the unknown derivative with respect to the ith pseudo input parameter. 

Now, consider a set of J random cross-sections perturbations
  
Δσ i{ }i=1

J , calculate the 

corresponding change in the pseudo input parameters as: 
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      x i = Ur
TΔσ i i = 1…J X = [x1…xJ ] 	
   (88)	
  

Next, execute the forward model j times and calculate the corresponding change in the 

response: 

	
   0 0( ) ( ) 1i iR RR i Jσ σ σΔ +Δ= = …− 	
   (89)	
  

 
Using the method of least-squares and the Moore-Penrose pseudo inverse (Meyer 

1999), determine the unknown coefficients in the regression surface as follows, where rΔ  is 

the vector of J response deltas. 

 
   
dR
dx

= XT( )†
Δr  (89) 

Finally, using the chain rule of differentiation, back-calculate the response sensitivity 

profile as: 

	
  
   
dR
dσ

= dR
dx

dx
dσ

= Ur XT( )†
Δr 	
   (90)	
  

 
The above regression surface is constructed for a single response. For multiple responses, 

e.g. flux distribution, the analysis could be easily repeated for all responses of interest. Note 

that one needs J forward model executions only regardless of the number of responses. This 

follows as in each forward model execution all responses variations are available which 

represents one of the advantages of forward sensitivity analysis. The extra computational 

efforts would be the solution of the minimization problem in Eq. 91 for each given response 

which is computationally cheap compared to the execution of the forward model. Finally, the 

value of J is often selected to be slightly larger than the number of unknowns, r, in order to 
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render an over-determined least-squares problem that is less sensitive to the numerical noise 

of the calculation. 

4.C.3 Concluding Notes on the GPT-Free Sensitivity Analysis Algorithm

In conclusion of this section, we remark that there are two sources of error in the 

GPT-free-generated sensitivities. The first source occurs during the construction of the 

subspace. As mentioned earlier, this error could be controlled by expanding the subspace 

until the maximum error meets a user-defined criterion. The second source of error results 

from the regression step. This error is directly related to the choice of the regression surface. 

For neutronics problems with small cross-sections perturbation, this error source is expected 

to be small given the adequacy of the linearity assumption. If one desires to employ the GPT-

free approach for a general nonlinear model, more sophisticated strategies should be 

employed in the selection of the regression surface. We recognize here that a great deal of 

research in the applied mathematics and statistical communities has been conducted over the 

years to address this very issue in a general context (Seber 2003, Bates 1988, Ghanem 1991). 

By way of few examples, response surface methods such as polynomial chaos and stochastic 

collocation and their gradient-enhanced implementations have proven effective as regression 

surfaces. The focus in this report is on a simple linear regression model, leaving the 

implementation of the GPT-free approach to general nonlinear models to future work. 
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5. GPT-Free Extensions

5.A Multi-Region Analysis

When considering the effect of a local perturbation in a global system for the purpose 

of constructing a reduced-order model, tests were derived using the UAM assembly model. If 

the ROM formed from a single pin perturbation is sufficiently small and the effects on 

neighboring pins is similarly small, it is expected that the ROM for an entire assembly should 

by extension be low-dimensional. The effect of a local pin perturbation an assembly was 

undertaken using the modified, specifying each fuel-pin with a unique mixture, UAM 

assembly model (Ivanov 2007). The graphic of the assembly model as output from NEWT is 

shown in Fig. 13.  

Figure 13: UAM assembly model: mixture-dependent perturbation model. 
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Introducing 10% RMS Perturbation of Uranium fission and capture cross-sections in 

a central pin introduces local and global changes to the sensitivity profile in the assembly 

system. Because of the nonlinearity in the model, the sensitivity profile changes for the 

system; however, changes external to the center pin are about 2 orders of magnitude smaller 

for neighboring pins and about 3 orders smaller for the remaining pins. A total of 64 different 

perturbation cases were studied to determine these effects. Indexing pins by row, the average 

relative changes in sensitivities for each pin cell is recorded in Fig. 14. The perturbed pin 

(25) is exhibiting changes of the same order of magnitude as cross-section perturbations or 

about 10% RMS; however, the relative change in sensitivities of the four adjacent pins are 

between 1.5 to 2.5 orders of magnitude smaller. Pins further away are 2 to 3.5 orders of 

magnitude less. A sample of four representative perturbations is plotted in Figure 15. 

Figure 14: Perturbations in pin 25: Average relative pin sensitivity changes. 
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Figure 15: Average pin sensitivity magnitudes of four sample center-pin perturbations. 

Given the nature of the sensitivity results, a ROM was formed by introducing 

perturbations globally in the assembly and examining a single pin-cell for study. The κ-

metric for the k-eigenvalue and the flux is demonstrated with increasing ROM dimension in 

Figures 16 and 17. The ROM dimension necessary to reduce changes in k to the specified 

software tolerance of 10-6 is around the order of 20; however, the flux 2-norm result reduces 

more slowly, suggesting a larger dimension ROM depending on the tolerance requested. A 

more instructive plot is shown in Figure 18 demonstrating the flux data point-wise reduction 

in error via increased ROM throughout the assembly. Reduction is possible with lower order 

models depending on the desired tolerance.  
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Figure 16: Single-pin 2-Norm flux κ-metric. 

 
 

 
Figure 17: Single-pin k-eigenvalue κ-metric. 

 



www.manaraa.com

75 

Figure 18: Pointwise flux relative plots from a single-pin perturbation for various ROM. 

Applying the GPT-Free methodology to the full assembly system as opposed to a 

single fuel-pin does not significantly increase the ROM dimension. The modification was 

made by considering each fuel-pin a unique material, such that the ROM could examine each 

region independently. Figures 19, 20, and 21 are similar to Figures 16 and 17 demonstrating 

only a mild increase in ROM dimension due to a full-assembly examination. 
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Figure 19: Full-core k-eigenvalue κ-metric. 

 

 

Figure 20: Full-core 2Norm flux κ-metric. 
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Figure 21: Full-core average flux error κ-metric. 

 

 Using the aforementioned GPT-Free approach with a ROM of dimension 200, 

response sensitivities can be obtained from a model with both an input and output space two 

orders of magnitude larger. This spatial independence may be a result of the independence of 

cross-section data assumed for each fuel-pin; however, in an actual assembly, perturbations 

are not independently placed within each pin and are instead globally introduced, 

significantly constraining the outputs. If the fuel-pins are nearly independent as in this case, 

large reductions are available. 
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5.B Mesh-Refinement Effects 

The GPT-Free approach constructs a reduced-order model regardless of a user-

specified mesh. The errors in the ROM formed using the GPT-Free approach introduced by 

means of mesh-refinement were studied. Based on the methodology implemented to form the 

ROM, errors introduced from a lower order mesh are expected to be minimal. A modified κ-

metric of the form in Eq. 92 will be used to study the effects of mesh refinement on the 

quality of a ROM. 
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A single reflected 2.45 w/o 235U pin-cell from the SCALE sample problems folder 

was modeled using NEWT and TRITON/TSUNAMI-2D with the standard v5-44 cross-

sections library (Dehart 2009, SCALE 2005). Two tests are completed using this model, the 

first examining the incremental relative change in sensitivities and flux due to mesh-

refinement and comparing it to 10% RMS cross-section perturbations of the model, and the 

second constructing a ROM at a given mesh-grid and evaluating its quality using the κ-metric 

with different mesh-grids.  

For the first test, the isotope, energy, and reaction-dependent cross-sections are randomly 

perturbed with a 10% RMS via a Gaussian distribution, and the TSUNAMI-2D sequence is 

executed to evaluate both the exact changes in fuel-region flux and the fuel sensitivity 

profiles due to these perturbations. Next, the TSUNAMI-2D is executed with increasing 

mesh-refinement and no cross-section perturbations to evaluate the incremental change in the 
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flux. The results are compared in Fig. 22 showing the reduction in average and maximum 

relative error in the flux under mesh-refinement as circles and plusses respectively. The 

relative change in average and maximum flux due to cross-section perturbations is shown as 

the solid and dashed lines. The relative flux error is computed as follows: 
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The m indicates the flux calculated with the mth mesh division. The relative change in flux 

due to 10% RMS cross-section perturbations is computed similarly, comparing the perturbed 

flux to the reference flux in Eq. 94. Here N = 20, the number of perturbation cases. 
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Note that with coarse mesh refinement, the relative change in flux due to 10% RMS 

cross-section perturbations is of similar order to the discretization errors. As the mesh is 

refined the discretization error diminishes, and becomes noticeably different from the flux 

variations due to cross-sections perturbation. The level-off beyond 12 mesh divisions/cell 

indicates that the best accuracy possible by the employed numerical scheme is reached. 
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Figure 22: Variations in the flux due compared between cross-section perturbations and mesh-
refinement. 

 

The second test uses the pin-cell model with a 2x2 mesh-grid to generate the 

reference GPT-Free ROM with dimension r = 200. A set of 20 reference cross-section 

perturbations are generated at each mesh-refinement grid. The quality of the ROM is 

evaluated using the κ-metric with increasing mesh refinement. The orthogonal contribution 

from benchmark cross-section perturbations at each mesh-grid is computed as in Eq. 94. The 

results are plotted in Fig. 23 comparing the changes in the evaluations as a function of mesh-

refinement. The red plus indicates the magnitude of the flux normed across energy. The blue 

circles show the 2-norm of the flux error for the 20 samples calculated as follows: 

   
ROM Flux Error = φ⊥ −φ ref  (91) 
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Figure 23: GPT-Free error vs. mesh-refinement 

 

The orthogonal flux is generated via flux perturbations projected orthogonal to the 

ROM constructed with a 2x2 mesh. Note that the error resulting from the GPT-free subspace 

is independent of the mesh refinement. This implies one can use a coarse mesh to generate 

the subspace, and employ a finer mesh to complete the forward sensitivity analysis. 

 

5.C Depletion GPT-Free Sensitivity Analysis 

Construction of a ROM can be extended over the life of the reactor system due to 

depletion. Consider the macroscopic cross-section, a product of the microscopic cross-

section, σ , and the number densities of materials, N. 

	
    Σ = Nσ 	
   (92)	
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The ROM for a steady-state problem perturbs only cross-section data to find a space from the 

fundamental sensitivities, dk dσ . To address depletion, burn-up must be incorporated in 

order to sample sensitivities over the time horizon. 

 Burn-up changes sensitivity information in two manners. First, fissile material is 

being depleted. While other fissile materials are being produced, the net effect is a decrease 

in fissile material that in time hardens the spectrum with the introduction of Pu-239 (Cacuci 

2010). Second, burn-up introduces additional actinides into the system. These two 

mechanisms strongly influence sensitivity data over the lifetime of a reactor. A sample of the 

most important actinides depletion evolution curves from a VHTR infinite lattice cell are 

shown in Figure 24. Also, the evolutions of sensitivity profile magnitudes are plotted in 

Figure 25. These two figures demonstrate the time-evolution of a reactor undergoing 

depletion. 

 

 

Figure 24: Depletion curves for actinides in a HTGR assembly model 
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Figure 25: Time and energy dependent k-sensitivity profiles of 21 actinides for fission and 
radiative capture modeled in TRITON using the HTGR infinite prismatic lattice model. 

. 

Typical depletion evaluations use a quasi-static approximation in order to efficiently 

model a reactor system. The quasi-static approach decouples the time variable in neutron 
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transport and depletion by considering that the reactor is steady-state at any time point and 

that the flux is relatively insensitive to changes in the nuclide densities over short time-spans. 

In other words, the flux is separable in time (Williams 1978). Such an approximation 

separates the depletion calculation into an iterative process of two steps: A steady-state 

critical eigenvalue transport solution followed by an evaluation in time of ordinary 

differential depletion equations. Using the quasi-static approximation in Eq. 97, the time-

dependent transport equation is approximated by steady-state evaluations at T points in time

{ } 1

T
i i
t

=
.  

	
  
   
M N ,σ ,t( )φ = 0 → M Nti

,σ( )φti
= 0 	
   (92)	
  

By decoupling the transport calculation from depletion, which is computed between transport 

time-steps, the burn-up equations can be simplified as in Eq. 98. 

	
  
   

dN t( )
dt

= A φ,σ ,t( )N t( ) →
dN t( )

dt
≈ A φti

,σ( )N t( ) 	
   (92)	
  

The removal of a time component from the transmutation matrix A greatly simplifies the 

depletion evaluation by reducing it to a system of ODEs. For a more extensive examination 

of the burn-up equations and related topics, see ref. (Turinsky 2010). 

 Typical perturbation theory calculations are evaluated with steady-state neutronics 

models. Similar to depletion perturbation theory (Williams 1978), additional steps must be 

taken to apply the GPT-Free methodology to depletion calculations because of model 

variations in time. First, the number of computations must be reduced in order to effectively 

sample the sensitivity space. Running the entire depletion sequence requires repeated 
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evaluation of the model in order to accurately determine both the flux and the nuclide density 

vector. Second, because the flux is evaluated only at a finite number of points in time, the 

sensitivities are not necessarily guaranteed to be represented fully at these pre-selected time-

points. The nonlinear change in sensitivity profiles in time is best seen in Figure 25, 

depicting the change in sensitivity profiles in an HTGR lattice (Dehart 2009) in time due to 

depletion. The depletion GPT-Free calculation is broken down into additional steps to 

address these concerns. 

 The first step is to determine the depletion-evolution curves of the nuclide density 

profiles subject to cross-section perturbations. To form the depletion-evolution curves, cross-

sections perturbations are introduced into the model at time zero. Enough burn-up time-steps 

are completed such that linear interpolation of nuclide densities between time-points 

minimizes the error below a user-defined threshold, similar to the method in which point-

wise cross-section evaluations are formed (Leppänen 2009). Using a series of perturbations, 

the mean and standard deviation of nuclides can be formed in time. The number of samples 

required must be statistically sufficient and thus is based on the Wilks’ criteria, shown in Eq. 

99, to select the number of samples, N, based on the desired probability/confidence interval, 

p and c (Wilks 1941, Strydom 2011, Kennedy 2011). 

	
     
1− pN( )− N 1− p( ) pN−1 ≥ c 	
   (92)	
  

	
  

 The second step is to include a time-sampling random-variable into the GPT-Free 

methodology. By sampling times randomly, a nuclide density vector is formed by sampling a 

nuclide density vector from the depletion-evolution curves. By linearly interpolating between 
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both the neighboring time-points mean and standard deviation, a model-plausible nuclide 

density vector can be prepared according to the calculations in the prior step. This scheme 

allows for the steady-state evaluation of any point in time between 1t  and Tt  that follows 

from the depletion-evolution curves. If too few depletion burn-up points are selected in 

developing the depletion-evolution curve, the sampling method will not accurately capture 

possible nuclide configurations in time; however, if sufficient time points are used, the time-

sampling scheme does not require repeated computation of prior time-steps. 

 From evaluations of the UAM assembly model (Ivanov 2007) using TRITON (Dehart 

2009) as shown in Figure 26, modeled with 10% RMS Gaussian cross-section perturbations 

introduced at the beginning of the evaluation over a time horizon of 1080 days at a specific 

power of 21.220 MWth/MTHM, the largest absolute uncertainty in any isotope is less than 

3mg per cubic centimeter for a corner-pin 238U at the final time-point. Gadolinium pins, 

denoted yellow in Figure 26, were depleted by flux in TRITON as opposed to the deplete-by-

power per SCALE manual recommendations (SCALE 2005). A comparison of all nuclides 

with uncertainty greater than 1µg was plotted vs. their sorted relative standard deviation in 

Figure 27. For all nuclides with relative uncertainty greater than 4%, their absolute 

uncertainty lies below 10-7 atoms per barn-cm.  
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Figure 26: UAM 7x7 assembly model with 9 mixture-depletion zones. 

 

 

 
Figure 27: RSD vs. absolute uncertainty for all mixture isotopes at all depletion time-points. 
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The depletion curves of four isotopes of Uranium and Plutonium in the interior pin, 

denoted red in Figure 26, are plotted vs. their relative standard deviation in Figures 28 - 31. 

The lines designate the linearly interpolated nuclide density value. Additional depletion 

curves are available but are not reproduced here due to their similarity to the four provided 

plots. For nuclides that have a large value, e.g. existing prior to depletion, the relative 

uncertainty tends to increase as time progresses; however, nuclides that are building up due 

to depletion tend exhibit a single or double peak behavior:  the initial peak being the 

uncertainty in its initial early production (high uncertainty on a very small value), and the 

second peak building up due to uncertainty increasing as time progresses. For 238U, the 

dominant isotope in the reactor, the uncertainty is fairly low throughout the cycle, resulting in 

the erratically shaped uncertainty plot. 

 

 
Figure 28: 235U number density and relative uncertainty vs. operating time at 21.220 

MWth/MTHM. 
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Figure 29: 238U number density and relative uncertainty vs. operating time at 21.220 

MWth/MTHM. 

 
 
 

 
Figure 30: 239Pu number density and relative uncertainty vs. operating time at 21.220 

MWth/MTHM. 
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Figure 31: 240Pu number density and relative uncertainty vs. operating time at 21.220 

MWth/MTHM. 
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the higher end of the singular indices are within the realm of errors in the calculation due to a 

set model convergence tolerance. Based upon both the similar shape and magnitude of the 

singular value plots, it is expected that depletion does not significantly add information to the 

output space, i.e. model order reduction via subspace methods should extend naturally to 

depletion problems. 

Figure 32: Flux singular values for steady-state and depletion due to cross-section 
perturbations. 

Analysis of a 235U enriched pin-cell under depletion provides a closer look at the 

effect of depletion on the flux and the ROM formed using the GPT-Free approach. In Fig. 33, 

the spread of the relative change in the flux using the SCALE 44 energy group structure is 

shown for twenty samples with 10% RMS cross-section perturbations drawn from a Gaussian 
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distribution in addition to random time-point sampling on the depletion-evolution curve. 

Variations increase in the thermal region due to the pin-cell being water moderated. 

Additionally energy group 20 shows a peak variance consistent with resonances due to the 

presence of 238U. 

 

 
Figure 33: Relative change in fuel-pin flux from 20 random times and cross-section 

perturbations 

 
 
 The GPT-Free approach has been applied to the pin-cell model both with and without 

depletion effects in order to compare the dimensionality of the reduced order model. Fig. 34 

compares the results of various dimensional ROMs both with and without depletion 

contributions by means of the average flux error κ-metric in Eq. 100. 
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   (92)	
  

The m in Eq. 100 designates the number of samples tested under the Wilks’ criteria. The 

orthogonal term designates the ROM projected change in flux.  While the effects of depletion 

do increase the dimension of the ROM, the change is less than a factor of 3. Compared with a 

traditional analysis of a depletion model where an evaluation for each response (adjoint-

mode) or input (forward-mode) requires evaluation at T time-points, the GPT-Free approach 

is expected to yield favorable results. 
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Figure 34: Average flux error κ-metric comparing the BOC ROM to the depletion (FULL) 

ROM.  

 
The following algorithm has been designed to for a depletion GPT-Free approach: 

1. Compute depletion-evolution curves between user-defined times   t0 ,tT⎡⎣ ⎤⎦ . 

2. Pre-compute a sample of N benchmark perturbations: 

a. Sample a random time within[ ]0, Tt t  and similarly sample the nuclide density 

vector. 

b. Perturb cross-sections using a Gaussian distribution 

c. Set aside the output and input parameter perturbations for later analysis 
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3. Determine the GPT-Free ROM with initial guess of dimension pΔ with p = 0 for the 

first iteration 

a. Sample pΔ random times within [ ]0, Tt t  and similarly sample the nuclide 

density vector. 

b. Perturb cross-sections using a Gaussian distribution 

c. Run the forward and fundamental adjoint model to obtain k-sensitivity profiles 

d. Collect p p+Δ sensitivity profiles into a matrix and form an orthogonal 

decomposition 

e. Using the input parameter space as determined by step 3.d, project this space 

onto the N cross-section perturbations from step 2. 

f. Run the model N times, evaluating the κ-metric to determine the ROM 

quality. 

i. If the ROM passes, r pp= +Δ  is the ROM dimension, move to step 4. 

ii. Otherwise, p pp= +Δ , return to step 3 and compute more 

perturbations. 

4. Using the ROM with dimension r, evaluate r δ+  forward depletion evaluations 

a. Perturb cross-sections at time zero using a Gaussian distribution 

b. Run the forward-depletion model 

c. Compute response sensitivities using a least-squares approach 

i. The δ additional perturbations is a small number that helps the least-

squares approach evaluate sensitivities appropriately 
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4*.  Alternative ROM formation strategy: 

a. Perturb cross-sections at time zero along the directions of the ROM matrix 

b. Run the forward-depletion model 

c. Compute response sensitivities using a finite-difference approach 

 

5.D Monte Carlo Extensions 

Recent work by Kiedrowski has enabled the possibility of adjoint-weighted tallies 

with the interest of ultimately providing sensitivity calculations for the fundamental 

eigenvalue (Kiedrowski 2010). The evaluation from Kiedrowski enables adjoint-weighted 

tallies of the form: 

	
  

   
kΔρk = −

ψ *,Pψ

ψ *,Fψ
	
   (93)	
  

Here, kρ  is the reactivity, and both P and F are the loss and production operators 

respectively; however, the operator terms must be specially described in Monte Carlo: 

 

	
  
   
P = ΔΣt − ΔS− 1

k
ΔF 	
   (94)	
  

 
In Eq. 102, S is the perturbed scattering term which for simplifications is assumed to be zero, 

an approximation. 

 Consider a relative sensitivity coefficient of the k-eigenvalue to cross-sections: 

	
  
  
sk =

σ
k

dk
dσ

≈ σ
Δσ

Δk
k

	
   (95)	
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Using reactivity relationships from Kiedrowski, the following relationships are possible for 

sensitivity coefficients formulated from Eq. 101 and 103: 

	
  
   
sk ≈

σ
Δσ

kΔρ
1− kΔρ

⎛
⎝⎜

⎞
⎠⎟
	
   (96)	
  

This formulation in Eq. 104 at first glance suggests that the sensitivity space would be full 

using continuous perturbations of cross-section data as the term in parenthesis is a scalar 

weighting factor; however, as certain vectors will significantly change the weighting factor 

term it is expected that some terms will be nearly zero, enabling reduction.  

 Consider a Gaussian normal perturbation  ξi  and a weight factor for the parenthesis 

term,  α i . For a single cross-section perturbation and a vector of perturbations, the following 

relation is revealed: 

	
  

   

sk ,ix ≈α i

σ x

Δσ i,x

≡ α i

σ x

ξiσ x

=
α i

ξi

sk ,i ≈α i

1
v i

v = ξ1…ξn⎡⎣ ⎤⎦
T
	
   (97)	
  

Because of the nature of Gaussian perturbations, the model is expected to be full-rank; 

however, the weighting factor depends on the physics of the system.  

Gaussian perturbations lead to poorly conditioned matrix without consideration of the 

impact of the weighting factors. A comparison of Gaussian perturbations and their inverse is 

available in Figure 35. This difficulty can be overcome by an alternative sampling scheme.  

Consider both the transport equation and the k-eigenvalue sensitivity equation for a 

deterministic model. 

	
    Lφ = λFφ 	
   (98)	
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Sk ,Σi

∂k
k

∂Σ i
Σ i

= −
Σ i

k

φ*, ∂L
∂Σ i

− 1
k
∂F
∂Σ i

⎛
⎝⎜

⎞
⎠⎟
φ

φ*, 1
k 2 Fφ

(99)	
  

In order to sample various model-evaluations effectively, perturbations in the input space 

must be well-conditioned. However, sensitivity coefficients, which develop the GPT-Free 

ROM, must also be sufficiently varied efficiently for the methodology to be efficient. For any 

variation, the vector of sensitivities will be highly dependent on *,   , andφ φ Σ . Because the 

microscopic cross-sections vary only mildly and both the forward and adjoint flux vary only 

in shape, the variations will be minor. The step to address this is to introduce number density 

perturbations.  
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Figure 35: Comparison of the singular value spectrum of Gaussian and 1/Gaussian 
perturbations. 

 

 A study was completed on a 235U enriched pin-cell containing traces of 234U and 236U 

to determine the effect of cross-section and nuclide perturbations on a model to investigate 

the hypothesis of nuclide perturbations. A series of tests perturbing both number density and 

cross-sections by sampling from a Gaussian distribution, outlined in Table 1, were evaluated 

with TSUNAMI-2D to generate sensitivity profiles. The singular value plots from the 

sensitivity curves using 100 samples are plotted in Figure 36. As can be seen from the graph, 

cross-section perturbations remove the steep fall-off prevalent from nuclide density 

perturbations. This is a result of the degrees of freedom from independently perturbing 

energy and reaction specific cross-sections. Increasing the number density perturbation adds 
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more information to the first singular values as seen by the shift in the knee of the curve. The 

first singular values represent the most important directions.  

 

Table 1: Perturbation test cases for the 235U Pin-Cell 

Case  RMS%σΔ   RMS%NΔ  
1 0 10% 
2 0 50% 
3 10% 0% 
4 10% 10% 
5 10% 50% 

 

Due to 234U and 236U existing in small quantities in a 235U fuel-pin, large number 

density variations are required in order to add importance to their respective components of 

the sensitivity profile. A detailed study of the 236U fission sensitivities shows that number 

density perturbations drive up the magnitude of sensitivities with little variation in shape; 

however, cross-section perturbations can modify the shape of the sensitivity profile but have 

a lesser impact on the overall magnitude. This can be demonstrated in Figs. 37 - 40 for cases 

1, 3, 4, and 5 from Table 1. These figures plot the energy-dependent fission k-sensitivity 

profile for 236U for 100 samples of the respective test cases. The spread in the data measures 

the relative effect the perturbation case had on the spread of the k-sensitivity profile. For 

equivalent perturbation magnitudes, number densities variations have a stronger effect than 

cross-sections on the magnitude of k-sensitivity profiles. 
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Figure 36: Singular values of sensitivity profiles for nuclide density (N) and cross-section (XS) 
perturbations of a 235U enriched fuel pin modeled in TSUNAMI-2D. 
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Figure 37: Case 3, 236U k-sensitivity profile, 10% RMS cross-section perturbations 

 
 

 
Figure 38: Case 1, 236U k-sensitivity profile, 10% RMS number density perturbations 
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Figure 39: Case 4, 236U k-sensitivity profile, 10% RMS number density and 10% XS 

perturbations 

 
 

 
Figure 40: Case 4, 236U k-sensitivity profile, 50% RMS number density and 10% XS 

perturbations 



www.manaraa.com

 

    104 

When working with Monte Carlo models, it is expected that both number density and 

cross-section variations will be required for effectively sampling a model. While there are 

many ways to sample input parameters, one recent method used effectively for continuous 

cross-section perturbations is the rQuad polynomial perturbation method for continuous 

cross-section data (Kennedy 2011). The rQuad polynomial method maps random quadratic 

functions to the cross-section data to preserve the physical shape of the cross-sections. For a 

sample of the perturbation, see Figure 41 where the relative perturbation is plotted as blue 

squares. The rQuad method was compared to Gaussian perturbations for the purpose of 

Monte Carlo sensitivity sampling. The singular values for 1000 samples using each 

methodology are plotted in Figure 42, with the rQuad method having a slightly improved 

singular value spectrum (Shown in blue). 

 

 

Figure 41: Sample rQuad perturbation of the 239Pu ENDF VI cross-section from MCNP. 
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Figure 42: The singular value spread of rQuad and Gaussian inverse perturbations 

 
 

While the rQuad method was shown to be a practical tool for sensitivity analysis with 

Monte Carlo models (Kennedy 2011), the method only slightly improves on the Gaussian 

perturbations in the conditioning of the Monte Carlo sensitivities. The large drop-off in the 

sensitivity spectrum is due to the domination of near-zero perturbations that do not strongly 

affect the model. As a result, the Gaussian distribution was modified to the following form: 

	
  

  

p x( ) =
1

σ 2π
e
− x2

2σ 2 x >σ 0

0 x ≤σ 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

	
   (100)	
  

A test of 10,000 samples of the distribution using a standard deviation of 10%  σ = 0.10( )and 

a cutoff of 1% ( )0 0.01σ =  is demonstrated in Fig. 43. 



www.manaraa.com

 106 

Figure 43: Numerical test of modified Gaussian distribution using 10k samples with 100 bins. 

The inverse of the modified Gaussian distribution is compared to the regular Gaussian in Fig. 

42. The result demonstrates the effectiveness of having a minimum threshold of perturbations

in the conditioning of the sensitivity vector coefficients. 
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Figure 44: Singular values of the modified Gaussian inverse compared with the standard 
Gaussian  

The next phase of research is to combine the modified Gaussian distribution with the 

rQuad methodology to gain the physical benefits of the rQuad methodology with the 

conditioning of the modified Gaussian sampling scheme. Combining this approach to cross-

section perturbations with the GPT-Free methodology and Kiedrowski’s methodology for 

solving for the fundamental k-sensitivity eigenvalue should allow for implementation of the 

GPT-Free approach to Monte Carlo models. 
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6. NUMERICAL RESULTS

6.A Thermal HTGR Infinite Prismatic Lattice Model

An HTGR infinite prismatic lattice was modeled using the deterministic package 

NEWT (Dehart 2009, Dehart 2011). A 2D NEWT model of this lattice is shown in Fig. 45; 

the shaded circles represent coolant channels and the smaller circles consist of the fuel 

compact. The standard 44-group cross-section library from SCALE is used with flux 

spatially homogenized over the fuel, coolant, and moderator regions. The input parameter 

space has dimension n = 1584 representing fission and capture cross-sections for 18 

actinides. The original model from Dehart uses the material data in Table 2. To ensure all 

actinides are present, the model is depleted using TRITON to 40GWd/MTHM; Table 3 

shows a list of these actinides.  A numerical convergence criterion of 10-6 is used for both the 

flux and the k-eigenvalue in NEWT. 

Table 2: Parameters for the HTGR infinite prismatic lattice 

Region Material a cm-1 b-1

Fuel U-238 2.12877E-02 
Fuel U-235 1.92585E-03 
Fuel O 4.64272E-02 
Fuel B-10 1.14694E-07 
Fuel B-11 4.64570E-07 

Matrix C (Natural) 8.77414E-02 
Matrix B-10 9.64977E-09 
Matrix B-11 3.90864E-08 
Coolant He-3 3.71220E-11 
Coolant He-4 2.65156E-05 
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Table 3: List of actinides modeled in fuel region (40 GWd/MTHM) 
Am-241 Cm-243 Cm-246 
Am-243 Cm-244 U-234 
Cm-242 Cm-245 U-235 
U-236 Pu-238 Pu-241 
U-238 Pu-239 Pu-242 
Np-237 Pu-240 Pu-243 

 

 

 

Figure 45: HTGR infinite prismatic lattice: Large circles – coolant channels, smaller circles – 
fuel. 
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Fig 46 demonstrates the effect of increasing the rank of the ROM to capture the null 

space of the model††. The figure is constructed as follows: the forward model is executed 

with N = 100 independent cross-section perturbations and the corresponding k-eigenvalue 

variations are recorded.  After the ROM is constructed, the k-eigenvalue variations resulting 

from parameters perturbations along the null space are also calculated using direct forward 

calculations. The value N is determined based on values for the probability and confidence of 

(p = 95%/c = 95%) from Eq. 99. The red plusses describe the exact variation in the k-

eigenvalue from reference value as predicted by the original forward model. The blue circles 

describe the error in k-eigenvalue resulting from using the ROM with an effective rank r = 

40. The black diamonds show the same results but with an r = 90 ROM.  The user may 

choose to increase the rank until a specified tolerance limit is reached. Note that the 

minimum ROM error cannot ever be lower than the tolerance of the forward calculations for 

the k-eigenvalue.  

Fig. 47 shows the microscopic fission density response results. The blue bars indicate 

the exact response variations for 100 different random simulations and the red bars represent 

the ability of sensitivities generated from the ROM in predicting the variation. Results 

indicate that response variations that are too small, i.e., within the numerical precision of the 

calculations, may not be well captured by the ROM model.  

                                                
†† In our context, the null space refers to the subspace that is orthogonal to the ROM subspace. As described 
earlier, perturbations that are orthogonal to the ROM subspace (i.e., the null space) are expected to produce 
negligible variations in the responses.  
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Figure 46: ROM Accuracy for k-eigenvalue (HTGR). 

 
 
 

 

Figure 47: ROM Accuracy for Fission Density (HTGR) 
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To develop insight into the behavior of the  κ-metric, Fig. 48 plots the metric against 

different rank estimates using both the flux and the k-eigenvalue as responses. For reference, 

the singular values of the matrix Z are compared in the same figure. Note that the singular 

values drop precipitously after approximately r = 90, after which the κ-metric levels off 

showing a plateau type behavior indicating that increasing the rank does not improve the 

accuracy of the ROM. This behavior is a result of the finite precision of the calculations. In 

general, if the model outputs have infinite precision, one would expect the accuracy of the 

ROM to improve until it matches the original model, that is when r = n. Given that the k-

eigenvalue derivatives are employed to construct the ROM, the accuracy of the ROM is not 

expected to be better than the accuracy of these derivatives. In our case, the derivatives from 

SCALE were available to five significant digits only which were read from a text file output. 

 To assess the performance of the ROM, it is employed to predict the variation in the 

fuel group fluxes for N different perturbations. The comparison of the exact group flux 

variation calculated by direct forward perturbation is compared to ROM predictions in Fig. 

49 in a similar manner to Fig. 47 using 100 benchmark perturbation cases. 
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Figure 48: The κ-metric compared to k-eigenvalue sensitivity singular values 

 

 

 
Figure 49: ROM Accuracy for the thermal group flux (HTGR) 
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Several experiments and responses were used to demonstrate the GPT-free approach 

to determine response variations with respect to parameters perturbations. Overall, we notice 

that responses that are strongly correlated with the k-eigenvalue, their associated prediction 

errors are found to be very small. For responses that are weakly correlated with the k-

eigenvalue, their exact variations are very small and the associated ROM errors are larger. 

This error however can be user-controlled employing the κ-metric.  

 

6.B Depletion UAM Assembly Model  

 The UAM assembly model is a component of a benchmark for uncertainty analysis in 

modeling. The 7x7 LWR assembly contains both UO2 pins and Gd-loaded pins. The model 

was readily available in SCALE6.1 (Dehart 2009). A short summary of the assembly 

parameters is available in Table 4 and a figure of the assembly layout as output from SCALE 

is in Figure 50. The SCALE 44-Group cross-section library was used for all subsequent 

SCALE calculations. The model was depleted using TRITON with 14 burn-up time steps as 

shown in Table 5 with 10% RMS Gaussian random cross-section perturbations introduced at 

the beginning of cycle (BOC). Cross-sections are introduced independently by isotope, 

reaction, and energy group. The resulting number densities from the depletion calculation 

were used to determine a depletion evolution curve, storing both the mean value and the 

standard deviation of number densities as a function of time for each isotope. Samples of the 

depletion evolution curve are available in Figures 28-31 in section 5.C. 
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Table 4: Assembly Parameter Data 

UO2 Fuel Density 10.42 g/cc Rod Pitch 1.785 cm 
Fuel Temperature 900 K Fuel Radius 0.60579 cm 
Cladding Zircaloy-2 Gap Radius 0.62103 cm 
Bin Material Zircaloy-4 Clad Radius 0.71501 cm 
Water Density 0.4577 g/cc NEWT Cells/Pin 16 (4x4) 
Water Temperature 560 K Ext Water Density 0.738079 g/cc 
Gap Material Helium Gap Density (Helium) 4.9560E-4 g/cc 
Clad Temperature 630 K Energy Groups 44 
Zirc-2 Density 5.678 g/cc Convergence Tolerance 10-6 

Zirc-4 Density 6.525 g/cc GadPin-Fuel Fraction 0.97 
GadPin Density 10.29 g/cc GadPin-Gd Fraction 0.03 

 

 

 

Figure 50: Depletion UAM assembly model  

 

Table 5: Burn-up time points (days) at 22.220 MW/MTHM Specific Power 

0 1 6 12 18 
36 72 108 270 360 
540 720 900 1080  
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The GPT-Free approach was then run in order to construct the ROM by randomly 

sampling points in time. From these points in time, the nuclide densities were obtained by 

sampling the depletion-evolution curve data. Random Gaussian cross-section perturbations 

with magnitude of 10% RMS were then introduced independently by isotope, reaction, and 

energy group. The resulting model was generated by preprocessing PYTHON scripts and 

submitted to SCALE61 TSUNAMI-2D. The sensitivities of these many simulations were 

then collected into a matrix and evaluated by the κ-metric. This process was repeated to 

determine the rank of the ROM. 

 

Table 6: Perturbed actinide list for the UAM assembly model 

Am-241 Cm-243 Cm-246 
Am-243 Cm-244 U-234 
Cm-242 Cm-245 U-235 
U-236 Pu-238 Pu-241 
U-238 Pu-239 Pu-242 
Np-237 Pu-240 Pu-243 

 

The global κ-metric response figures in Figs. 51 and 52 are based on the following 

pair of equations: 

	
  

  

κ = 105
k⊥ − k0

k0
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⎝
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   (101)	
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   (102)	
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Figure 51: κ-metric plot using Eq. 109 for increasing ROM dimension. 

 
 

 

Figure 52: κ-metric plot using Eq. 110 for increasing ROM dimension. 
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In these figures, the black dots at points along the x-axis represent a sample of the κ-metric at 

a given ROM iteration. With a step-size of twenty, the ROM dimension at any point is 20x. 

The blue line and dots indicate the cutoff according to a tolerance of 1 pcm error. 

Furthermore, the red line indicates a cutoff at 10-6
 corresponding to 0.1 pcm. 

The process to test the ROM is to use a reference set of N benchmark calculations 

according to Eq. 99. The specific sets of cross-section perturbations introduced are stored so 

that the ROM can be tested by estimating the null-space. Given some input space Q as 

determined by the ROM of increasing dimension, the orthogonal component can be tested as 

follows: 

	
  
   
Π σ 0 + I −QQT( )Δσ ,φ⊥ ,k⊥( ) = 0 	
   (103)	
  

If the ROM is accurate, the following should hold to a user-defined tolerance: 

	
  
  

φ⊥ −φ = 0
k⊥ − k = 0

	
   (104)	
  

As shown in Figs. 51 and 52, the error from the orthogonal components represented by Eq. 

112 as measured by Eqs. 109 and 110 are decreasing with increasing ROM dimension up to 

the numerical tolerance of the software. 

 While the global ROM is of desire for general determination of the ROM dimension, 

the ROM can be tested further with the κ-metric by examining the error in the flux for each 

mixture in each energy group. Samples of these mixture and energy-group specific flux plots 

are available in Figs. 53-58. The error is calculated as follows: 

	
  
  
κ mg = φm,g −φ0m,g{ } m = mixture g = group 	
   (105)	
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Figure 53: κ-metric plot for mixture 2, energy group 31. 

 
 

 

Figure 54: κ-metric plot for mixture 2, energy group 42. 
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Figure 55: κ-metric plot for mixture 2, energy group 44. 

Figure 56: κ-metric plot for mixture 5, energy group 15. 
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Figure 57: κ-metric plot for mixture 7, energy group 44. 

 

 

 

Figure 58: κ-metric plot for mixture 9, energy group 17. 
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 As can be seen in Figs 53-58, some mixtures and energy groups require a larger 

dimensional ROM to capture the effects in a single pin and energy-group. Similarly, some 

pins and energy groups, e.g. Fig. 58, do not require as large of an ROM to capture the effect 

of the model. Overall the global responses in Figs 51 and 52 tend to be limited by the larger 

individual components such as in Fig. 57 and are thus fairly reliable. 

 One can use the κ-metric to estimate the effectiveness of the ROM in calculating 

reaction rates and reaction rate ratios. The following set of 14 reaction rate densities, ratios, 

and collapsed one-group cross-sections in Table 7 were selected as a sample to test the ROM 

effectiveness. The inner products are in energy, and are mixture specific. 

 

Table 7: List of examined reaction inner products examined by the κ-metric. 

Reaction Description Reaction Description 
1: 235 ,U: f E

σ φ  U-235 Fission 2: 235 ,U:
Eγσ φ  U-235 Radiative 

Capture 
3: 238 ,U: f E

σ φ  U-238 Fission 4: 238 ,U:
Eγσ φ  U-238 Radiative 

Capture 
5: 239 :Pu ,f E

σ φ  Pu-239 Fission 6: 239 :Pu ,
Eγσ φ  Pu-239 Radiative 

Capture 

7: 235
,

U:
,1
f E

E

σ φ
φ

 
One-group U-235 

Fission XS 8: 238
,

U:
,1

E

E

γσ φ
φ

 
One-group U-238 

Capture XS 

9: 239Pu
,

:
,1
f E

E

σ φ
φ

 
One-group Pu-239 

Fission XS 10: 

U 235

,

,
E

f E

γσ φ
σ φ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 
Capture-Fission 

ratio, U-235 

11: 

U 238

,

,
E

f E

γσ φ
σ φ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 
Capture-Fission ratio, 

U-238 12: 

Pu 239

,

,
E

f E

γσ φ
σ φ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 
Capture-Fission 

ratio, Pu-239 

13: 
238

235

U:

U:

,

,
f E

f E

σ φ
σ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 
Fission Fraction  
U-238 : U-235 14: 

239

235

:

U

Pu ,

,:
f E

f E

σ φ
σ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 
Fission Fraction 
Pu-239 : U-235 
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 In examining the ROM for the responses in Table 7, care must be taken to adequately 

describe the ROM error. Because the introduced changes in cross-sections are known, the 

error contribution should fully be the effect of flux variations, in effect this is a measurement 

of the error in calculating the indirect term. Thus the error, as compared to reference 

calculations, will be taken at the point of the perturbed cross-sections. Because of cross-

section weighting, and the fact that the error is highest in the thermal groups where cross-

sections are the largest, some reaction rate responses will be affected. The fourteen different 

responses are considered for the assembly-center pin, mixture 1 and plotted in Figs. 59-72. 

 

 

Figure 59: κ-metric plot for 235U fission reaction density in mixture 1. 
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Figure 60: κ-metric plot for 235U capture reaction density in mixture 1. 

 

 

Figure 61: κ-metric plot for 238U fission reaction density in mixture 1. 
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Figure 62: κ-metric plot for 238U capture reaction density in mixture 1. 

 
 

 

Figure 63: κ-metric plot for 239Pu fission reaction density in mixture 1. 
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Figure 64: κ-metric plot for 239Pu capture reaction density in mixture 1. 

 

 

Figure 65: κ-metric plot for 235U one-group fission cross-section in mixture 1. 
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Figure 66: κ-metric plot for 238U one-group capture cross-section in mixture 1. 

 

 

 

Figure 67: κ-metric plot for 239Pu one-group fission cross-section in mixture 1. 
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Figure 68: κ-metric plot for 235U capture-to-fission ratio in mixture 1. 

 
 

 

Figure 69: κ-metric plot for 238U capture-to-fission ratio in mixture 1. 
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Figure 70: κ-metric plot for 239Pu capture-to-fission ratio in mixture 1. 

 
 

 

Figure 71: κ-metric plot for the fission ratio of 238U to 235U in mixture 1. 
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Figure 72: κ-metric plot for the fission ratio of 239Pu to 235U in mixture 1. 

 

While results are provided for a single mixture, the results do not change appreciably for 

other fuel-pin mixtures. For comparison, consider Figs. 73 and 74, which show the same 

reaction rate ratio as Figs. 71 and 72 but for mixture 3, a corner fuel-pin. Comparable trends 

in reduction are visible. In each plot presented, the solid blue line indicates the average 

change from the reference case using 10% RMS Gaussian cross-section perturbations. The 

red dash and dash-dot lines indicate thresholds for 10-3 and 10-6 respectively relative to the 

average change marked by the blue line. The black dots indicate measurements of the ROM 

error using the orthogonal flux at the indicated ROM dimension 20x. 
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Figure 73: κ-metric plot for the fission ratio of 238U to 235U in mixture 3. 

 

 

 

Figure 74: κ-metric plot for the fission ratio of 239Pu to 235U in mixture 3. 
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 The sensitivities of the flux values for each mixture and energy group were calculated 

using the least squares approach mentioned in section V of this dissertation. Sensitivities 

were calculated using a ROM of dimension 660 given 700 samples. A set of 100 random 

10% RMS cross-section perturbations were introduced into the model to give a set of actual 

model changes due to cross-section perturbations. The sensitivities were then used to predict 

the changes in the flux for all 100 test cases. The following figures demonstrate the result of 

this numerical experiment comparing the change in the flux value to the error in prediction 

due a combination of ROM error and nonlinearity. Cross-section perturbations were 

introduced at time zero, and depleted up to 990 days. The samples were carried through the 

15 depletion points. Figures 75-83 demonstrate the test for the center-pin (mixture 1) at 

beginning of cycle for the fast, intermediate, and thermal energy ranges. Similarly, Figures 

84-92 show the same energy groups, again for mixture 1, at the end-of-cycle (990 days). 

Overall results throughout the spectrum show errors similar to the fast and intermediate 

energy ranges; however, the error in the thermal regions is larger, due to a few appreciable 

factors. First, the flux in the lowest energy groups for the UAM assembly model are the 

smallest in the model, appreciating the highest ROM error as seen before using the κ-metric 

(see Figs. 55 and 57). Second, the thermal flux varies strongly (relatively) despite the small 

value (Fig. 33). Third, the variation of the lowest energy group is right near the numerical 

tolerance for the simulation (Fig. 55). These three factors, combined with the existence of 

nonlinearity due to 10% RMS cross-section perturbations, leads to the expectation that these 

results for the lowest energy groups are less favorable as compared to the intermediate and 

higher energy group using the GPT-Free ROM. 
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Figure 75: GPT-Free Numerical Demo, BOC, Mixture 1, Group 1, 100 Samples with 10% RMS XS Perturbations 
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Figure 76: GPT-Free Numerical Demo, BOC, Mixture 1, Group 2, 100 Samples with 10% RMS XS Perturbations 
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Figure 77: GPT-Free Numerical Demo, BOC, Mixture 1, Group 3, 100 Samples with 10% RMS XS Perturbations 
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Figure 78: GPT-Free Numerical Demo, BOC, Mixture 1, Group 12, 100 Samples with 10% RMS XS Perturbations 
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Figure 79: GPT-Free Numerical Demo, BOC, Mixture 1, Group 13, 100 Samples with 10% RMS XS Perturbations 
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Figure 80: GPT-Free Numerical Demo, BOC, Mixture 1, Group 14, 100 Samples with 10% RMS XS Perturbations 
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Figure 81: GPT-Free Numerical Demo, BOC, Mixture 1, Group 42, 100 Samples with 10% RMS XS Perturbations 
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Figure 82: GPT-Free Numerical Demo, BOC, Mixture 1, Group 43, 100 Samples with 10% RMS XS Perturbations 
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Figure 83: GPT-Free Numerical Demo, BOC, Mixture 1, Group 1, 100 Samples with 10% RMS XS Perturbations 
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Figure 84: GPT-Free Numerical Demo, EOC, Mixture 1, Group 1, 100 Samples with 10% RMS XS Perturbations 
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Figure 85: GPT-Free Numerical Demo, EOC, Mixture 1, Group 2, 100 Samples with 10% RMS XS Perturbations 
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Figure 86: GPT-Free Numerical Demo, EOC, Mixture 1, Group 3, 100 Samples with 10% RMS XS Perturbations 
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Figure 87: GPT-Free Numerical Demo, EOC, Mixture 1, Group 12, 100 Samples with 10% RMS XS Perturbations 
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Figure 88: GPT-Free Numerical Demo, EOC, Mixture 1, Group 13, 100 Samples with 10% RMS XS Perturbations 
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Figure 89: GPT-Free Numerical Demo, EOC, Mixture 1, Group 14, 100 Samples with 10% RMS XS Perturbations 
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Figure 90: GPT-Free Numerical Demo, EOC, Mixture 1, Group 42, 100 Samples with 10% RMS XS Perturbations 
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Figure 91: GPT-Free Numerical Demo, EOC, Mixture 1, Group 43, 100 Samples with 10% RMS XS Perturbations 
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Figure 92: GPT-Free Numerical Demo, EOC, Mixture 1, Group 44, 100 Samples with 10% RMS XS Perturbations 
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Part of the nature of the error comes from the numerical contamination due to the 

limited accuracy of the numerical calculation. In effect, the least-squares operation is 

attempting to solve for the sensitivities for the thermal energy groups, which have less than 

two digits of precision using a numerical tolerance of 10-6. This can be addressed partially by 

increasing the numerical tolerance which will reduce the numerical error in computing the 

least squares solve. Furthermore, if the least square solve is completed in the non-linear 

range, the sensitivities will also be prone to errors. While the result may be linear about some 

level of perturbations, this cannot be guaranteed for all possible linear combinations. One 

method to address this is to use finite-difference to calculate derivatives for each direction in 

the ROM, Q, represented by a column vector qi. 

Consider the Gateaux derivative for direction, qi , scaled by αi: 

Df σ 0( ) ≈ f σ 0 1+α iqi( )( )− f σ 0( )
α i

(106)	
  

The error between the finite difference derivative and the actual derivative is (Kelley 1999): 

Df σ 0( )− f ′ σ 0( ) = O α i +
ε

α i

⎛
⎝⎜

⎞
⎠⎟

(107)	
  

Where    is the machine precision, the error in equation 115 is minimized by selecting 

  α i = ε .

Df σ 0( )− f ′ σ 0( ) = O 2 ε( ) and α i = ε (108)	
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Equation 116 is valid for general calculations; however, a ROM input basis 

determined by an adaptive method requires additional consideration. Using the κ-metric, 

consider the relative importance for each ROM input direction: 

 

 

Figure 93: Flux relative reduction error κ-metric for the UAM assembly. 

 

Each input direction is less important than the first, decreasing in a logarithmic fashion until 

numerical tolerance, 10-6 is reached. Restated, a perturbation using 1q  will yield a change in 

approximately 8000pcm; however, a perturbation using 660q will only change the model by 

approximately 0.25pcm at the final time-point. The benefit of an adaptive ROM is therefore 
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its own enemy when it comes to finite-differencing for a sensitivity analysis. Consider the 

following weighting scheme for the ROM considered in Figure 93: 

	
  
  
Df σ 0( ) ≈ f σ 0 1+ βiα iqi( )( )− f σ 0( )

βiα i

	
   (109)	
  

Where: 

	
  

  

βi =
1

max κ i φ{ } j=1

N( ) 	
   (110)	
  

Equation 118 represents the relative scaling to bring direction i to the same magnitude as the 

first direction. Consider the last direction of importance which is of the magnitude of 

numerical tolerance. A perturbation along this direction would be smaller than the first 

direction by a factor of 1 / β . Without scaling up the perturbation, the model will not change 

within machine precision. The result is to select iα  such that the following holds: 

	
  
   
α i = min β ε ,1( ) 	
   (111)	
  

The constraint of 1 is required such that cross-section perturbations do not become negative 

when introduced into the simulation. The result applied to Figure 91 yields a set of weighting 

parameters given a SCALE convergence criterion of 10-6 as shown in Figure 94. 

Unfortunately, this approach is further complicated by two factors. First, SCALE outputs 

only the first 6 digits for any flux response, with effective changes occurring in the last 3-4 

output digits. With a tolerance at 10-6, the calculation precision does not offer sufficient 

information for differencing. Second, even if the numerical tolerance is increased further, the 



www.manaraa.com

 

    154 

edited flux output will not be able to represent the code calculated changes. These two factors 

cause problems because the calculated sensitivities from Equation 117 are of the same order 

or smaller than the error predicted by Equation 116. Simply put, finite-differencing along the 

ROM directions using SCALE text-edited output does not compute reliable numerical 

derivatives given single-precision output. A sample finite-difference calculation using a 

ROM with dimension 660 demonstrates this problem for a particular flux-response in Figure 

95. Most neutronics codes (NEWT included) do calculate the angular flux using double 

precision accuracy. By extracting this binary information, it is possible to mitigate this 

problem by increasing the numerical tolerance of the software such that sensitivities can be 

reliably calculated. 

 

 
Figure 94: Recommended weighting parameters for finite-differencing 
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Figure 95: Sample sensitivity profile for flux, group 1, BOC, mixture 1. 

 
 

To improve the quality of results affecting numerical limitations, two changes were 

made. First, a software tool was designed (See Appendix) to extract the binary flux data from 

the SCALE output files. Second, the numerical tolerance was increased from 10-6 to 10-9, the 

highest precision that would still reliably converge to a solution. Using this improved 

accuracy significantly reduced the level of error in calculations. A sample of output using an 

ROM with dimension 270 after 3 years of burn-up is shown in Figure 96. Even though the 

error can be reduced beyond a rank of 270, the predictive error does not increase due to 

limitations of the sensitivity analysis as shown in Figure 97. 

 



www.manaraa.com

 

    156 

 

Figure 96: Error in first-order GPT-Free sensitivity fast flux prediction generated with r = 270.  

 
 

 

Figure 97: GPT-Free summed relative flux prediction error using 100 sample benchmarks. 
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 Using the higher precision simulation, GPT-Free sensitivities were compared to a test 

of 132 forward finite differences for fission and capture cross-sections of both 235U and 239Pu. 

As mentioned in section 4.C.2, the numerical errors introduced by sensitivities near 

numerical tolerance place a limit on the accuracy of sensitivities determined via a forward 

sensitivity analysis; however, the largest sensitivities are determined as expected. A 

comparison between the forward finite-difference and the GPT-Free sensitivities is shown in 

Figure 98 at the beginning of cycle. 

 

 

Figure 98: GPT-Free SA compared to finite difference for 235U and 239Pu  
fission and capture cross-sections, BOC. 
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A comparison of flux error using sensitivities generated from the GPT-Free 

sensitivity analysis to predict the change from an increment of the thermal 235U fission cross-

section is shown in Figure 98. On average the typical error from sensitivities is 

approximately six orders of magnitude smaller than the mixture and energy group specific 

flux. The figure shows the result from a test after a half year of burn-up. 

 

 

Figure 99: GPT-Free SA prediction of flux from a 5% increment of 235U thermal  
fission cross-section after 180days of BU at 21.2 MWth/MTHM. 
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One final note of the depletion GPT-Free sensitivity model is the determination of 

resonance cross-sections. In particular, SCALE6 overwrites infinite dilution cross-sections. 

Even if cross-sections are in injected into the master cross-section library, the software tools 

will overwrite these values using continuous energy cross-sections. This causes the 238U 

resonances to occasionally have errors due to the inability of the sensitivities to correct for 

these cross-sections. For future work, the depletion process needs to be separated from 

TRITON so that the working cross-section library, which is overwritten at each depletion 

point, can be used to update cross-sections. 
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6.C Depleted TMI Mini-Core Multi-Assembly Model  

 The TMI Mini-core model is a thermal PWR 45x45 reflected pin model simulating 

nine 15x15 assemblies with burnable poison, control rod channels, and fuel loading with pin-

level detail (e.g. no homogenization). All pin-details such as gap, and clad are included with 

100 mesh cells per pin (as compared to 16 for the UAM LWR model). The model, shown in 

Figs. 100 and 101, was derived from the TMI-1 UAM model specifications (Ivanov 1999). 

To build a complete inventory of isotopes, the model was depleted to 380 days at 21.220 

MW/MTHM specific power using TRITON. All calculations are completed using the 

SCALE 44 energy group cross-section library with a numerical tolerance set to 10-9 for all 

transport calculations in TSUNAMI-2D and NEWT. Gadolinium pins were depleted by flux 

as opposed to power depletion per SCALE manual recommendations. The complete list of 

actinides is in Table 8, and all other isotopes modeled are included in Table 9. 

Table 8: UO2 Actinide Composition at 380 days. 

Actinide UO2 SCALE Input Composition 
u-235 9.14178E-04 
u-238 2.17182E-02 
u-234 1.26408E-08 
u-236 3.96340E-05 
np-237 1.17957E-06 
pu-238 6.97396E-08 
pu-239 6.36204E-05 
pu-240 6.38089E-06 
pu-241 1.81644E-06 
pu-242 8.47834E-08 
am-241 2.40074E-08 
am-243 2.98918E-09 
cm-242 1.39389E-09 
cm-243 6.25819E-12 
cm-244 1.26297E-10 
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Table 9: All remaining isotopes in UO2 fuel pins at 380 days. 

o-16 eu-151 sn-126 mo-97 
h-1 eu-153 xe-131 mo-98 

gd-152 eu-154 cs-134 ba-140 
gd-154 eu-155 cs-135 i-129 
gd-155 b-10 cs-137 pd-105 
gd-156 b-11 ce-144 zr-95 
gd-157 n-14 pr-143 pd-107 
gd-158 kr-83 nd-143 pd-108 
gd-160 i-135 nd-145 pr-141 
in-115 pm-148 nd-146 eu-156 
ag-109 xe-133 nd-147 ru-102 
xe-135 cd-113 nd-148 nd-144 
cs-133 ce-141 pm-147 zr-96 
zr-94 ru-101 pm-149 i-127 
nb-93 sm-153 sm-147 zr-91 
mo-95 ru-103 sm-149 mo-100 
tc-99 la-139 sm-150 ru-104 

ru-106 ce-143 sm-151 ce-142 
rh-103 zr-93 sm-152 nb-95 
rh-105 mo-99   

 

 

 

Figure 100: A single pin in the TMI mini-core model. 
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Figure 101: TMI Mini-core model, 45x45 with 10x10 mesh cells per pin.

The reference flux in the fuel, both UO2 and Gd-UO2, are plotted with the reference 

convergence criteria in Figure 102. Because of the large number of fuel regions and mixtures, 

the κ-metric is examined integrally for all fuel mixtures. In some cases, the burnable poison 

regions are extracted to illustrate the difference in the ROM reduction error for the two fuels. 
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Figure 102: Mean Fuel Flux, TMI Mini-core model at 380 days at 21.220 MW/MTHM. 

 

Even for a model with numerous cross-sections and flux-regions, the GPT-Free 

algorithm automatically selects input parameters that are important to the model using k-

eigenvalue sensitivity profiles. Figure 103 shows the effect of filtering on the input parameter 

space. There are 2640 cross-section input parameters which have been perturbed at 5% RMS 

independently by isotope, energy group, reaction, and mixture (shown in blue). The red 

overlay shows the effect of the ROM determining the important cross-sections. Because the 

GPT-Free method filters out the unimportant directions, the remaining inputs, visualized as 
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blue in Figure 103, are the dominant or model dependent input parameters. By using the 

GPT-Free algorithm, a sensitivity analysis can be performed on the reduced input parameter 

space described by the blue region in Figure 103. 

Figure 103: GPT-Free algorithm automatically selecting the important cross-section regions. 
Regions where the red is still spanning the full range of cross-section perturbations are cross-

sections that have less impact on the model physics. Regions where the red is subtracted to 0 are 
regions that are highly important for the model. Cross-section perturbations mapped by this 

figure were generated by randomly sampling a 5% RMS Gaussian distribution.
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Figure 104: κ-Metric for all fuel fluxes vs. increasing ROM dimension. 

 

Figure 104 is the κ-Metric for the UO2 fuel regions showing a logarithmic decrease in 

ROM reduction error with increasing ROM dimension. Figures 105 and 106 show the similar 

result for the Gd-UO2 fuel region and the total system (e.g. mixture independent) flux. Figure 

107 compares data from Figs. 104 and 105 on the same chart. Equation 120 is the specific κ-

Metric used for the set of figures and for ROM determination. 
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Figure 105: κ-Metric for all Gd-UO2 fuel fluxes vs. increasing ROM dimension. 

 

Equation 120 measures the reduction error from truncating the input parameter space 

to the specified dimension of ROM. As the ROM increases in dimension, more input 

parameter directions are included, reducing the error in the numerator term. 

 

	
   κ = g

G

∑
x
∑φ⊥ −φ0

g

G

∑
x
∑φ0

	
   (111)	
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Figure 106: κ-Metric for the mixture independent flux vs. increasing ROM dimension. 

 
 

Specific to Figure 106, the overall mixture flux is limited by the fuel flux because 

numerical convergence is limited to the UO2 fuel pin convergence. Typically, the coolant and 

the Gd-UO2 pins consistently converge more quickly. This makes sense because the non-

burnable poison laced UO2 fuel contributes the most to the overall power of the reactor 

system. 
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Figure 107: κ-Metric of both fuel types (UO2 and GdUO2) vs. increasing ROM dimension. 

 
The ROM reduction error for fuel pins (UO2 and Gd-UO2) is demonstrated in Figure 

108 by showing the energy dependent fuel flux and corresponding ROM error for variable 

ROM dimensions. The green bar indicates the numerical stopping criteria set in NEWT. As 

previously mentioned, the stopping criterion is limited by convergence in the UO2 fuel pins; 

however, the flux elsewhere is fairly well resolved. Results below the convergence criteria, 

even if they appear feasible, must be questioned and used with caution. 
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Figure 108: ROM Reduction Error for the two primary fuel regions UO2 and GdUO2. Note that 
the κ-Metric errors are dominated by the largest error terms corresponding to the largest flux. 

 

Using an ROM of dimension 215 to reduce reduction error to approximately less than 

1% of the flux, the GPT-Free algorithm generated a set of sensitivities that were used to 

examine the quality of the sensitivity analysis results as compared to the aforementioned 

reduction errors. The ROM was generated using 225 forward simulations with a least squares 

regression onto the first 215 columns of the subspace Q for the set of sensitivities generated 

by 5% RMS cross-section perturbations.  
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Figure 109: GPT-Free test case comparing an actual and predicated change in flux due to 5% 

RMS cross-section perturbations with an ROM dimension of 215 

 
 

Figure 109 shows a sample test result using the aforementioned ROM for the flux. 

The predicted flux is comparable, even below the numerical tolerance at 10-9
 with an 

exception near the epithermal region in the UO2 fuel pins. This anomaly is likely due to the 

combination of mixtures to compute the final results. By increasing ROM dimension, it is 

expected that this error will decrease. 
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Figure 110: GPT-Free SA fractional flux error by energy group for a UO2 fuel pin. 

 
 

Figure 110 checks the reduction error estimate based on the ROM. For the UO2 fuel 

pin, the fuel errors, with exceptions near epithermal and energy group 18, all fall below the 

expected 1% tolerance picked by the ROM. The average error is significantly lower for the 

UO2 fuel pin, and is consistent with the κ-Metric as predicted in Figure 106. 
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Figure 111: GPT-Free SA fractional flux error by energy group for a Gd-UO2 pin. 

 
 

Figure 111 checks the reduction error estimate based on the ROM again, but for the 

Gd-UO2 fuel pin. All energy group errors fall below the expected 1% tolerance picked by the 

ROM.  Actually, the error is also below 0.1%. Comparing this result with Figure 107, the 

observed error of a lower dimension ROM being sufficient to predict the Gd-UO2 fuel pin is 

consistent with the reduction error predicted by the κ-Metric. Furthermore, the average error 

is significantly lower, approximately 0.01%. 



www.manaraa.com

 

    173 

7. CONCLUSIONS AND LIMITATIONS 
 

 This dissertation describes a GPT-free approach to compute responses sensitivities 

that does not require the explicit formulation of GPT equations. This approach requires the 

execution of classical PT to solve for the fundamental adjoint flux and construct the k-

eigenvalue sensitivity profile vector. Unlike the GPT approach, it is not dependent on the 

number or type of responses, but instead the rank of the model. The approach employs the 

results generated from classical PT to find a subspace in the parameters space that can be 

used to construct a ROM that is more amenable for forward sensitivity analysis. Further, the 

ROM reduction error is user controlled. As observed in previous work, and further 

demonstrated in current work, the size of the subspace is significantly smaller than the 

original number of cross-sections for representative neutronics models. This implies that one 

can estimate all relevant responses variations using a forward sensitivity analysis rather than 

a traditional GPT approach. 

 The GPT-free approach has two sources of errors, one that results from constraining 

input parameters perturbations to a subspace, i.e. the reduction error in forming a ROM, and 

the other resulting from the first-order sensitivities surrogate model formed from 

regression/finite differencing. While increasing the size of the subspace can control for the 

former error-term; the latter however is highly sensitive to the choice of the regression 

surface. For linear and quasi-linear models, a regression approach is straightforward and 

represents the most accurate approach to calculating first-order sensitivities. When the GPT-

free approach is extended to nonlinear models, more developments will be needed to 

optimally choose the regression surface.  
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Specific to depletion GPT-Free, results from the first order sensitivity analysis are 

more dominated by the second source of error due to the non-linearity of the number density 

at some future burn up due to cross-section perturbations at the BOC. While the ROM 

appropriately determines the space of all cross-sections that are important in the problem, 

future burn-up flux results are dependent on the change in cross-section introduced at BOC 

and the change in number densities that have evolved over the depletion cycle. This is effect 

is captured as the correction term at each time-step in William’s paper in 1978. 

There are several important limitations in the work demonstrated by this dissertation. 

First, the κ-Metric is not monotonically decreasing with increasing rank. While there is a 

general downward trend in most graphs, a single step is insufficient to judge cutoff criteria. 

The κ-Metric attempts to overcome this limitation by means of sampling and Wilks’ statistics 

by providing a likelihood of meeting the criteria set forth by the user. A second limitation is 

that this approach was applied specifically to absorption cross-sections; testing was not 

completed on scattering cross-sections. The expectation is that scattering will be more 

challenging for the GPT-Free approach to capture without larger perturbations in number-

density and cross-section. Finally, the approach depends on computational power to compute 

generalized inverses to large matrices. Because the emphasis of this work is the approach to 

compute sensitivities by avoiding GPT formulation, regression and mathematical alternatives 

were not a focus of this dissertation. Additional considerations may be required when 

matrices exceed desktop computational limits. In summary, these limitations are not 

prohibitive of the approach, as demonstrated by this dissertation; however, they must be 

considered in context with future applications. 
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8. FUTURE WORK

An important future application of this approach is the determination of response 

sensitivities for continuous energy Monte Carlo models. Implementing a GPT approach in a 

Monte Carlo model is not straightforward given the different modeling philosophies (e.g. 

computing inner products equivalents without rerunning the model). This approach provides 

an immediate resolution to this problem. Its implementation is non-intrusive as it only 

requires the ability to perturb cross-sections and the ability to calculate the sensitivity of k-

eigenvalue with respect to cross-sections, with work towards the latter being recently 

demonstrated in Kiedrowski as described in section 5.D. 

Additional future work is to extend the current developments to nonlinear models. 

This is important for multi-physics models where the construction of a global GPT model is 

often computationally impractical. Several regression schemes will be investigated; we will 

take advantage of recent developments in the applied mathematical and statistical 

communities on the construction of higher order regression techniques for nonlinear models. 

Additionally, two trends from the GPT-Free ROM occur consistently: First, the ROM 

selects automatically a set of input parameter basis; however, capturing the tail-effects 

becomes more difficult for the algorithm. This is an opportunity for optimization where the 

algorithm can be improved to better sample/select the basis as the ROM approaches the 

reference model. Second, the sensitivity analysis tends to run into trouble due to the order of 

magnitude difference between variable sensitivities. The sampling and differencing scheme 

likely can be improved to better account for this variability vs. a simple finite difference or 

linear least squares regression as employed in this dissertation. 
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The calculation of Depletion GPT-Free using the SCALE code runs into trouble for 

two reasons: First, any master-library perturbations that affect infinite-dilution cross-sections 

and resonance parameters is overwritten at every depletion cycle. Second, any attempts to 

use the working-library are impractical because the TRITON software is not easily 

disassembled into isolated SCALE input files. Steady-state calculations do not have this 

difficulty because the TSUNAMI routines are straightforward to reconstruct. To correct for 

this, either TRITON’s sequence must be modified, or the depletion sequence for TRITON 

must be emulated such that cross-sections can be injected into the working library – Infinite 

Dilution XS are MT + 3000 – appropriately for each time point under consideration such that 

the resonance regions and respective sensitivities can be appropriately determined. While 

NITAWLST performs better than BONAMIST/CENTRM in adjusting sensitivities in the 

resonance ranges due to master library cross-section perturbations, implementation and 

accuracy could be significantly improved by addressing this limitation. 

The Gaussian sampling scheme to construct a ROM is favorable compared to ordered 

basis such as the Fourier series or the canonical basis; however, the Gaussian basis, as 

described in the Monte Carlo discussion, is very inefficient because the majority of samples 

are very nearly zero, giving large-scale models difficulty. While the recommended 

alternative sampling scheme is a recommended starting point, this concept of sampling can 

be pushed further to optimize the ROM basis formation. Not only would this research reduce 

the ROM dimensionality, but also it would improve the numerical quality of the results. 
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A.I GPT-Free Depletion Instructions with PYTHON + SCALE 6.x: 

All instructions here are for the NCSU HPC using the load-sharing facility (NCSU 2012). 
1. SETUP-PHASE

a. Construct the following directories in a folder, henceforth denoted WORK:
i. WORK/data/

ii. WORK /pdata/
iii. WORK /cx_data/
iv. WORK /tmpdir/
v. WORK /output/

vi. WORK /utils/
b. Run the model depletion case, abort the software run prior to Bonami and

after TRITON.
c. Copy the file ft11f001, the shortened master library file to the data/ directory
d. Prepare the HPC files for this directory and place them in the data/ directory

i. bsub_scale
ii. scale_run

iii. NOTE: These files must be saved with the UNIX EOL format.
e. Copy all required utilities and scripts to the utils/ directory
f. Copy the job instruction file (JIF) to the WORK/ directory
g. Check that CLAROL+(Master) is installed and the path is included in the

scale_run file
2. DEPLETION-EVOLUTION CURVE (DEC)

a. Prepare the DEC PYTHON script with the HPC instructions for your specific
system.

b. Prepare the DEC Reference input file (modified to include the script-
generated perturbation commands) in the data/ directory

c. Call the DEC PYTHON script as follows:
dec.py $J $NP $JIF $INP $Q $QT

i. $J = Job #
ii. $NP = # of perturbations to complete

iii. $JIF = Job Instruction File
iv. $INP = SCALE Input File
v. $Q = HPC Queue

vi. $QT = HPC Queue Time (In Minutes). This must be sufficiently large
to allow completion.

d. Collect all output files and parse for nuclide density information
e. Build a nuclide-density depletion-evolution curve table
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3. DEPLETION-ROM FORMATION (DRF)
a. Prepare the DRF PYTHON script with the HPC instructions for your specific

system.
b. Prepare the DRF reference input file (modified to inject mixture-specific

number densities).
i. This file is model specific based on both the number and temperature

of mixtures.
c. Call the DRF PYTHON script as follows:

drf.py $J $NP $JIF $INP $Q $QT
i. Compute a set of N perturbations to set aside based on the Wilks’

criteria.
ii. Compute an initial guess of P perturbations to estimate the ROM.

d. Begin the ROM determination loop
i. Collect sensitivity data into the output directory

ii. Build a ROM from the sensitivity data, and project onto the N
perturbations

iii. Run the model with the projected perturbations
iv. Compare to the reference case using the κ-metric
v. If insufficient accuracy, run additional perturbations and repeat

4. GPT-Free Evaluation
a. Use a forward sensitivity analysis along the ROM input space from the DRF

step to compute sensitivities of responses due to input parameters
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A.II Depletion Perturbation Sequences 

Depletion Perturbation Sequence (CLAROL+): 
1. Run the depletion problem (T-DEPL) and exit after construction of the master library

(ft11f001) 
2. Run ENSTRUC to generate an energy group structure file (ft47f001)
3. Use VARIGEN or PPERT to generate cross-section perturbation parameter files for

CLAROL+
4. Run CLAROL+ to generate a new perturbed master library (ft99f001)
5. Run the depletion problem with the new perturbed master library

Depletion Perturbation Sequence (AIM+) 
1. Run AIM to convert the binary reference library to text.
2. Run PAIM to perturb the working text library
3. Run AIM again to package the perturbed library as a new master perturbed library
4. Run the depletion problem (T-DEPL)

Differences between CLAROL+ and AIM+ 
• CLAROL+ corrects for Bondarenko factors in the XS data. AIM+ does not currently

support this feature. CLAROL+ incorrectly adjusts Bondarenko factors and this 
feature has thus been disabled. 

• CLAROL+ supports 2D nuclide perturbations and more general MT perturbations.
AIM+ supports MT 2 (Isotropic elastic scattering), MT 18 (Fission), and MT 102
(Radiative Capture)

Comparison of AIM+ and CLAROL+ due to the effect of Bondarenko factor correction for 5 
test cases: 

TEST CASE 1 2 3 4 5 
k-eff (AIM+) 0.979818 1.123007 1.048604 1.118065 1.096524 
k-eff (CLAROL+) 0.980174 1.120274 1.047523 1.118978 1.091639 
PCM ERROR 36.25684 -243.954 -103.275 81.66467 -447.474 

In general, CLAROL+ is superior to AIM+. AIM+ with modifications could be used to avoid 
the preliminary step required for CLAROL+. Alternatively, CLAROL+ could be upgraded to 
work directly with master binary cross-section libraries (e.g. xn44) 
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A.III Reference Input Files for UAM & TMI Depletion Test Cases 

Job Specification File: 
44 9 16 2 1 0.1 ;* NG NMIX NISO NRXN PMODE PMAG 
1 
2 
4 
201 
202 
212 
203 
213 
500 
92234 
92235 
92236 
92238 
94238 
94239 
94240 
94241 
94242 
94243 
95241 
95243 
96242 
96243 
96244 
96245 
18 
102 

NG = # of energy groups 
NISO = # of Isotopes 
NRXN = # of Reactions 
PMODE = Perturbation Mode (1 = Gaussian) 
PMAG = Perturbation Magnitude (RMS), e.g. 0.1 is equivalent to 10% RMS 
*Omit the semicolon and remainder of text on the line.
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Reference Input File (ROM Determination) UAM Model: 
%%INJECT%% 
 
=tsunami-2d   parm=(nitawlst) 
Depletion Time-Point Run 
pxn44 
' Data taken from: 
'        Benchmark for Uncertainty Analysis in Modeling (UAM) 
'        for Design, Operation and Safety Analyses of LWRs,  
'        Nuclear Energy Agency, 2007.    
' JOB: %%JID%% 
' PERT: %%PID%% 
' TIME: %%TID%% days 
read alias 
 $gadpin 500 end 
 $clad   101 102 103 104 105 301 302 303 304 305 end 
 $mod    111 112 113 114 115 311 312 313 314 315 end 
 $gap    121 122 123 124 125 321 322 323 324 325 end 
end alias 
read comp 
' 2.93% enriched fuel pin 
%%COMP_1%% 
%%COMP_201%% 
' 1.94% enriched fuel pin 
%%COMP_2%% 
%%COMP_202%% 
%%COMP_212%% 
' 1.69% enriched fuel pin 
%%COMP_203%% 
%%COMP_213%% 
' 1.33% enriched fuel pin 
%%COMP_4%% 
' 3% Gd2O3 by weigh, 2.93% enriched fuel pin 
%%COMP_500%% 
' gap/clad/moderator 
  he    $gap  den=4.9559E-4 1 711.15  end 
  zirc2 $clad den=5.678 1 630 end 
  h2o   $mod    den=0.4577 1  560  end 
' channel 
  zirc4 630 den=6.525 1 630 end 
' water in bypass 
  h2o   620 den=0.738079 1 560  end 
end comp 
read celldata 
  latticecell squarep pitch=1.6359 111 fuelr=0.60579   1 gapr=0.62103 121 
cladr=0.71501 101 end 
  latticecell squarep pitch=1.6492 112 fuelr=0.60579   2 gapr=0.62103 122 
cladr=0.71501 102 end 
  latticecell squarep pitch=1.8588 114 fuelr=0.60579   4 gapr=0.62103 124 
cladr=0.71501 104 end 
  latticecell squarep pitch=1.7524 311 fuelr=0.60579 201 gapr=0.62103 321 
cladr=0.71501 301 end 
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  latticecell squarep pitch=1.7524 312 fuelr=0.60579 202 gapr=0.62103 322 
cladr=0.71501 302 end 
  latticecell squarep pitch=1.7621 313 fuelr=0.60579 203 gapr=0.62103 323 
cladr=0.71501 303 end 
  latticecell squarep pitch=1.8646 314 fuelr=0.60579 212 gapr=0.62103 324 
cladr=0.71501 304 end 
  latticecell squarep pitch=1.8684 315 fuelr=0.60579 213 gapr=0.62103 325 
cladr=0.71501 305 end 
  latticecell squarep pitch=1.6333 115 fuelr=0.60579 500 gapr=0.62103 125 
cladr=0.71501 105 end 
end celldata 
 
read model 
Depletion Setup for UAM Model (GPT-Free) 
read parm 
 echo=yes timed=yes drawit=yes cmfd=1 epsilon=1e-6 inners=5 therm=yes 
therms=1 outers=9999 xycmfd=4 saveangflx=yes prtbalnc=yes 
end parm 
read materials 
  mix=  1        pn=1  com='2.93% UO2'         end 
  mix=  2        pn=1  com='1.94% UO2'         end 
  mix=  4        pn=1  com='1.33% UO2'         end 
  mix=$gadpin    pn=1  com='2.93% UO2 (3% Gd)' end 
  mix=201        pn=1  com='2.93% UO2, edge'   end 
  mix=202        pn=1  com='1.94% UO2, edge'   end 
  mix=212        pn=1  com='1.94% UO2, corner' end 
  mix=203        pn=1  com='1.69% UO2, edge'   end 
  mix=213        pn=1  com='1.69% UO2, corner' end 
  mix=111        pn=2  com='H2O(void)'         end 
  mix=101        pn=1  com='Zirc2'             end 
  mix=121        pn=1  com='Helium'            end 
  mix=620        pn=2  com='H2O(solid)'        end 
  mix=630        pn=1  com='Zirc4'             end 
end materials 
read geom 
  unit   11   
    com="corner rod 1.33% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media   4 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   12   
    com="edge rod 1.69% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media 203 1 1 
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    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   14   
    com="edge rod 1.94% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media 202 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   17   
    com="corner rod 1.69% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media 213 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   22   
    com="interior rod 1.94% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media   2 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   23   
    com="interior rod 2.93% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media   1 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   33   
    com="interior gad pin" 
    cylinder 1   0.270917524 
    cylinder 2   0.383135237 
    cylinder 3   0.469242916 



www.manaraa.com

 

    197 

    cylinder 4   0.541835048 
    cylinder 5   0.60579     
    cylinder 6   0.62103     
    cylinder 7   0.71501     
    cuboid   8 4p0.9375  
    media 500 1 1 
    media 500 1 2 -1 
    media 500 1 3 -2 
    media 500 1 4 -3 
    media 500 1 5 -4 
    media 121 1 6 -5 
    media 101 1 7 -6 
    media 111 1 8 -7 
    boundary    8  2 2  
  unit   37   
    com="edge rod 2.93% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media 201 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
  unit   77   
   com="corner rod 1.94% enr" 
    cylinder 1   0.60579     
    cylinder 2   0.62103     
    cylinder 3   0.71501     
    cuboid   4 4p0.9375      
    media 212 1 1 
    media 121 1 2 -1     
    media 101 1 3 -2     
    media 111 1 4 -3     
    boundary    4  2 2 
global unit 100 
   cuboid  1   4p6.70306 
   array 1 1  place 4 4  0.0 0.0  
   cuboid  2   4p6.90626 
   cuboid  10  4p7.62 
   media   111 1 1 
   media   630 1 2 -1 
   media   620 1 10 -2 
   boundary 10 32 32 
end geom 
read array 
  ara=1 nux=7 nuy=7 typ=cuboidal 
  fill  
    17  14  37  37  37  14  77 
    14  23  33  23  23  23  14 
    14  23  23  23  33  23  37 
    14  23  23  23  23  23  37 
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    12  23  33  23  23  33  37 
    12  22  23  23  23  23  14 
    11  12  12  14  14  14  17 end fill 
end array 
read bounds  
  all=refl  
end bounds 
end model 
end 
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Reference Input File (ROM Determination) TMI Model (Depletion Routine): 
=t-depl 
TMI Minicore UAM (44 group)               
v5-44                  
 
read comp 
'UO2 Fuel, enriched to 4.85% by weight 
uo2     1  den=10.283  1.0  551.0  92235  4.85  92238  95.15  end 
'Cladding, zircaloy4 
zirc4   2  den=6.55    1.0  551.0  end 
'Helium gas gap 
he      3  1.0  551.0  end 
'Water coolant 
h2o     4  den=0.766   1.0  551.0  end 
'Gad, Gd2O3+UO2, Gd2O3 is 2 w/o, UO2 is enriched 4.12 w/o    
wtptgad 5  10.144 4 92235 3.51 92238 82.87 64000 1.74 8016 11.88 1.0 551.0 end 
'Cladding Material 
inconels 6  1.0  551.0  end 
'Absorber 
cd      7  den=9.927  0.05  end 
in      7  den=9.927  0.15  end 
ag      7  den=9.927  0.80  end 
'CR Coolant 1 
h2o     8  den=0.766  1.0  551.0  end 
'CR Coolant 2 
h2o     9  den=0.766  1.0  551.0  end    
'Coolant for the Gad     
h2o    10  den=0.766  1.0  551.0  end  
'Helium for the Gad 
he     11  1.0  551.0  end  
'Cladding for the Gad 
zirc4  12  den=6.55    1.0  551.0  end      
end comp 
read celldata 
 latticecell squarep hpitch=0.72135  4 fuelr=0.46955 1 gapr=0.47910  3 cladr=0.54640  2 end 
 latticecell squarep hpitch=0.72135 10 fuelr=0.46955 5 gapr=0.47910 11 cladr=0.54640 12 end 
end celldata 
 
read depletion  
 1 flux 5 
end depletion 
 
read burndata 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
  power=21.220  burn=40   end 
end burndata 
 
read model                
read parm                 
 run=yes                  
 echo=yes                 
 drawit=yes               
 prtflux=yes              
 collapse=yes combine=no  
 cmfd=yes               
 xycmfd=4  timed=yes      
 solntype=keff              
 epsilon=1.0e-6  outers=5000 
 inners=5 prthmmix=yes             
end parm 
read materials 
1  2  "UO2 4.85"          end 
2  2  "Clad"              end 
3  2  "Gas Gap"           end 
4  2  "Coolant"           end 
5  2  "Gad"               end 
6  2  "Inconel"           end 
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7  2  "Absorber"          end 
8  2  "CR Coolant 1"      end 
9  2  "CR Coolant 2"      end 
10 2  "Gad Coolant"       end 
11 2  "Gad Helium"        end 
12 2  "Gad Clad"          end 
end materials      
read geometry 
' Full fuel pin cell 
unit 1 
cylinder 1  0.46955  origin x=0.72135 y=0.72135 
cylinder 2  0.47910  origin x=0.72135 y=0.72135 
cylinder 3  0.54640  origin x=0.72135 y=0.72135 
cuboid   4  1.44270  0  1.44270  0     
media 1  1  1 
media 3  1  2  -1 
media 2  1  3  -2 
media 4  1  4  -3 
boundary 4 
' Guide tube with CR out (full) 
unit 2 
cylinder 1  0.63245 origin x=0.72135 y=0.72135   
cylinder 2  0.67310 origin x=0.72135 y=0.72135   
cylinder 3  0.50292 origin x=0.72135 y=0.72135   
cylinder 4  0.56007 origin x=0.72135 y=0.72135   
cuboid   5  1.44270  0  1.44270  0   
media 8  1  3 
media 9  1  4  -3 
media 4  1  1  -4 
media 2  1  2  -1 
media 4  1  5  -2 
boundary 5 
' Guide tube with CR in (full) 
unit 3 
cylinder 1  0.63245  origin x=0.72135 y=0.72135 
cylinder 2  0.67310  origin x=0.72135 y=0.72135 
cylinder 3  0.50292  origin x=0.72135 y=0.72135 
cylinder 4  0.56007  origin x=0.72135 y=0.72135 
cuboid   5  1.44270 0  1.44270  0     
media 7  1  3 
media 6  1  4  -3 
media 4  1  1  -4 
media 2  1  2  -1 
media 4  1  5  -2 
boundary 5 
' Fuel with gad pin cell (full) 
unit 4 
cylinder 1  0.46955  origin x=0.72135 y=0.72135 
cylinder 2  0.47910  origin x=0.72135 y=0.72135 
cylinder 3  0.54640  origin x=0.72135 y=0.72135 
cuboid   4  1.44270 0  1.44270  0    
media 5  1  1 
media 3  1  2  -1 
media 2  1  3  -2 
media 4  1  4  -3 
boundary 4 
' Full instrumentation tube 
unit 5 
cylinder 1  0.56005  origin x=0.72135 y=0.72135 
cylinder 2  0.62610  origin x=0.72135 y=0.72135 
cuboid   3  1.44270 0  1.44270  0    
media 4  1  1 
media 2  1  2  -1 
media 4  1  3  -2 
boundary 3 
' Quarter instrumentation tube 
unit 6 
cylinder 1  0.56005 origin x=0.72135 y=0.72135 chord +x=0.72135 chord +y=0.72135   
cylinder 2  0.62610 origin x=0.72135 y=0.72135 chord +x=0.72135 chord +y=0.72135  
cuboid   3  1.4427  0.72135  1.4427  0.72135    
media 4  1  1 
media 2  1  2  -1 
media 4  1  3  -2 
boundary 3 
' Half fuel pin cell bottom 
unit 7 
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cylinder 1  0.46955 origin x=0.72135 y=0.72135  chord +y=0.72135 
cylinder 2  0.47910 origin x=0.72135 y=0.72135  chord +y=0.72135 
cylinder 3  0.54640 origin x=0.72135 y=0.72135  chord +y=0.72135 
cuboid   4  1.44270 0  1.44270  0.72135    
media 1  1  1 
media 3  1  2  -1 
media 2  1  3  -2 
media 4  1  4  -3 
boundary 4 
' Half fuel pin cell left 
unit 8 
cylinder 1  0.46955  origin x=0.72135 y=0.72135  chord +x=0.72135 
cylinder 2  0.47910  origin x=0.72135 y=0.72135  chord +x=0.72135 
cylinder 3  0.54640  origin x=0.72135 y=0.72135  chord +x=0.72135 
cuboid   4  1.4427  0.72135  1.4427  0    
media 1  1  1 
media 3  1  2  -1 
media 2  1  3  -2 
media 4  1  4  -3 
boundary 4 
' Half instrumentation tube left 
unit 9 
cylinder 1  0.56005  origin x=0.72135 y=0.72135   chord +x=0.72135  
cylinder 2  0.62610  origin x=0.72135 y=0.72135   chord +x=0.72135  
cuboid   3  1.4427  0.72135  1.4427  0   
media 4  1  1 
media 2  1  2  -1 
media 4  1  3  -2 
boundary 3 
' Half instrumentation tube bottom 
unit 10 
cylinder 1  0.56005  origin x=0.72135 y=0.72135  chord +y=0.72135 
cylinder 2  0.62610  origin x=0.72135 y=0.72135  chord +y=0.72135 
cuboid   3  1.44270  0  1.44270  0.72135   
media 4  1  1 
media 2  1  2  -1 
media 4  1  3  -2 
boundary 3 
' Central 1/4 rodded assembly 
unit 11 
cuboid   1  10.82025   0   10.82025   0    
array    1  1   place 1 1 -0.72135 -0.72135   
media 4  1  1 
boundary 1 
' Left-side 1/2 assembly unrodded 
unit 12 
cuboid   1  10.82025   0   21.6405   0   
array    2  1   place 1 1 -0.72135 0   
media 4  1  1 
boundary 1 
' Bottom-side 1/2 assembly unrodded 
unit 13 
cuboid   1  21.6405   0   10.82025   0   
array    3  1   place 1 1  0 -0.72135  
media 4  1  1 
boundary 1 
' Top corner full assembly 
unit 14 
cuboid   1  21.6405  0  21.6405  0    
array    4  1   place  1  1  0  0   
media 4  1  1 
boundary 1  
global unit 100 
cuboid   1  32.46075  0  32.46075  0    
array    5  1   place  1  1  0.0  0.0  
media 4  1  1 
boundary 1  180 180 
end geom 
read array 
ara=1  nux=8  nuy=8  typ=square  pinpow=yes 
fill  
' 8 1 1 1 1 1 1 1  
' 8 1 1 1 1 1 4 1  
' 8 1 3 1 1 1 1 1  
' 8 1 1 1 3 1 1 1  
' 8 1 1 1 1 1 1 1  
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' 8 1 3 1 1 3 1 1  
' 8 1 1 1 1 1 1 1  
' 6 7 7 7 7 7 7 7 
6 7 7 7 7 7 7 7 
8 1 1 1 1 1 1 1 
8 1 3 1 1 3 1 1 
8 1 1 1 1 1 1 1 
8 1 1 1 3 1 1 1 
8 1 3 1 1 1 1 1 
8 1 1 1 1 1 4 1 
8 1 1 1 1 1 1 1 
end fill 
ara=2  nux=8  nuy=15 typ=square  pinpow=yes 
fill  
' 8 1 1 1 1 1 1 1  
' 8 1 1 1 1 1 4 1  
' 8 1 2 1 1 1 1 1  
' 8 1 1 1 2 1 1 1  
' 8 1 1 1 1 1 1 1  
' 8 1 2 1 1 2 1 1  
' 8 1 1 1 1 1 1 1  
' 9 1 1 1 1 1 1 1 
' 8 1 1 1 1 1 1 1  
' 8 1 2 1 1 2 1 1  
' 8 1 1 1 1 1 1 1  
' 8 1 1 1 2 1 1 1  
' 8 1 2 1 1 1 1 1  
' 8 1 1 1 1 1 4 1  
' 8 1 1 1 1 1 1 1  
8 1 1 1 1 1 1 1 
8 1 1 1 1 1 4 1 
8 1 2 1 1 1 1 1  
8 1 1 1 2 1 1 1 
8 1 1 1 1 1 1 1 
8 1 2 1 1 2 1 1 
8 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1  
8 1 2 1 1 2 1 1 
8 1 1 1 1 1 1 1 
8 1 1 1 2 1 1 1 
8 1 2 1 1 1 1 1 
8 1 1 1 1 1 4 1 
8 1 1 1 1 1 1 1 
end fill 
ara=3  nux=15  nuy=8  typ=square   pinpow=yes 
fill  
' 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
' 1  4  1  1  1  1  1  1  1  1  1  1  1  4  1 
' 1  1  1  1  1  2  1  1  1  2  1  1  1  1  1 
' 1  1  1  2  1  1  1  1  1  1  1  2  1  1  1 
' 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
' 1  1  2  1  1  2  1  1  1  2  1  1  2  1  1  
' 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
' 7  7  7  7  7  7  7  10 7  7  7  7  7  7  7  
7  7  7  7  7  7  7  10 7  7  7  7  7  7  7 
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  1  2  1  1  2  1  1  1  2  1  1  2  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1  1  1  2  1  1  1  1  1  1  1  2  1  1  1  
1  1  1  1  1  2  1  1  1  2  1  1  1  1  1 
1  4  1  1  1  1  1  1  1  1  1  1  1  4  1 
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
end fill 
ara=4  nux=15  nuy=15  typ=square  pinpow=yes   
fill 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 
1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 
1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 
1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 
1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
end fill 
ara=5  nux=2  nuy=2 typ=square   pinpow=yes  
fill 
' 12  14 
' 11  13 
11  13 
12  14 
end fill 
end array 
read bnds 
    all=mirror 
end bnds 
end model 
end   
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Python Run Script (GPT-Free): 
#! Sequence Run for CLAROL+ and SCALE6 
#!  
#! ARG1 = Job ID 
#! ARG2 = Number of Perturbations 
#! ARG3 = Job Settings Input File 
#! ARG4 = SCALE Input File 
#! ARG5 = QUEUE Run 
#! ARG6 = QUEUE Time 
 
import os, sys, random, time 
 
random.seed() 
 
NJ_S = sys.argv[1] 
NP_S = sys.argv[2] 
JIFILE = sys.argv[3] 
RIFILE = sys.argv[4] 
QUEUEGO = sys.argv[5] 
QUEUETIME = sys.argv[6] 
 
NJ = int(NJ_S) 
NP = int(NP_S) 
 
print 'Beginning Job: ' + NJ_S + ' and Pert: ' + NP_S 
print 'Job Input File: ' + JIFILE 
print 'SCALE Input File: ' + RIFILE 
print 'Queue: ' + QUEUEGO + '    with ' + QUEUETIME + ' minutes reserved per processor' 
 
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Read the Input File 
print 'Reading Input File: ' + JIFILE 
f = open(JIFILE, 'r') 
RFILE = f.readlines() 
f.close() 
 
#! Groups, Num Nuclides, Num Reactions, Perturbation Mode, Perturbation Magnitude, Library File Folder 
NG = RFILE[0].split()[0] 
NMIX = RFILE[0].split()[1] 
NNUC = int(RFILE[0].split()[2]) 
NRXN = int(RFILE[0].split()[3]) 
PMODE = int(RFILE[0].split()[4]) 
PMAG = float(RFILE[0].split()[5]) 
 
Nlist = list() 
NPlist = list() 
Rlist = list() 
Mlist = list() 
 
for x in range(1,int(NMIX)+1): 
 Mlist.append(int(RFILE[x])) 
 
for x in range(1,int(NNUC)+1): 
 NPlist.append(int(RFILE[x+int(NMIX)])) 
 
for x in range(0, int(NNUC)): 
 for y in range(0, int(NMIX)): 
  z = 1000000 * Mlist[y] + NPlist[x] 
  Nlist.append(z) 
 
for x in range(1, int(NRXN)+1): 
 Rlist.append(int(RFILE[int(NNUC)+x+int(NMIX)])) 
 
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Prepare Directories 
print 'Preparing Directories' 
for x in range(1,NP+1): 
 os.mkdir('tmpdir/J' + NJ_S + 'x' + str(x)) 
 
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Prepare XS Perturbations 
print 'Preparing XS Perturbation Files' 
for x in range(1,NP+1): 
 for y in range(0,int(NNUC)): 
  sISO = str(NPlist[y]).rjust(5,'0') 
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  for z in range(0,int(NRXN)): 
   sMT = str(Rlist[z]).rjust(4,'0') 
   sFull = 'pdata/param_' + sISO + '_' + sMT + '_' + NJ_S + '_' + str(x) 
   f = open(sFull, 'w') 
   #! print 'Writing file: ' + sFull 
   f.write('1'.rjust(12) + str(NG).rjust(12)) 
   for ig in range(0,int(NG)): 
    if (PMODE == 1): 
     #! Gaussian Random Number 
     eta = random.gauss(0,PMAG) 
    elif (PMODE == 0): 
     #! Uniform Distribution 
     eta = (2.0 * random.random() - 1.0) * PMAG 
    else: 
     sys.exit("Perturbation mode not recognized!!!") 
     eta = 0.0 
    #! Write Value out to the file 
    sData = '{0: 14.6E}'.format(eta) 
    f.write(sData) 
   f.write('\n') 
   f.close() 
   
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Preparing Scale Run Files 
print 'Copying SCALE Perturbation Files' 
for x in range(1,NP+1): 
 for y in range(0,int(NNUC)): 
  sISO = str(NPlist[y]).rjust(5,'0') 
  for z in range(0,int(NRXN)): 
   sMT = str(Rlist[z]).rjust(4,'0') 
   sFull = 'pdata/param_' + sISO + '_' + sMT + '_' + NJ_S + '_' + str(x) 
   sTarget = 'tmpdir/J' + NJ_S + 'x' + str(x) + '/param_' + sISO + '_' + sMT + '_1' 
   os.system('cp ' + sFull + ' ' + sTarget) 
   
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Preparing Scale INPUT File 
print 'Preparing SCALE input files...' 
for x in range(1,NP+1): 
 INJECT = '=shell\n' 
 for y in range(0,int(NNUC)): 
  sISO = str(NPlist[y]).rjust(5,'0') 
  for z in range(0,int(NRXN)): 
   sMT = str(Rlist[z]).rjust(4,'0') 
   sFULL = 'param_' + sISO + '_' + sMT + '_1' 
   INJECT = INJECT + 'cp ${RTNDIR}/' + sFULL + ' ' + sFULL + '\n' 
 INJECT = INJECT + 'cp /abdelkhalik_data/cbkenned/PROJECTS/DEPL/FSA/data/ft11f001 ft11f001\n' 
 INJECT = INJECT + 'cp /abdelkhalik_data/cbkenned/PROJECTS/DEPL/FSA/data/ft47f001 ft47f001\n' 
 INJECT = INJECT + 'end\n' 
 INJECT = INJECT + '=readparam_master\n' 
 INJECT = INJECT + str(NNUC*NRXN).rjust(12) + str(NG).rjust(12) + '\n' 
 for y in range(0,int(NNUC)): 
  sISO = str(NPlist[y]).rjust(5,'0') 
  for z in range(0,int(NRXN)): 
   sMT = str(Rlist[z]).rjust(4,'0') 
   sFULL = ' param_' + sISO + '_' + sMT + '_1' 
   INJECT = INJECT + sFULL + '\n' 
 INJECT = INJECT + 'end\n' 
 INJECT = INJECT + '=clarolplus_master\n' 
 INJECT = INJECT + 'in=11 var=10 sam=1 out=99\n' 
 INJECT = INJECT + 'end\n' 
 INJECT = INJECT + 'end\n' 
 INJECT = INJECT + '=shell\n' 
 INJECT = INJECT + 'mv ft99f001 pxn44\n'  
 INJECT = INJECT + 'mv ft11f001 oxn44\n' 
 INJECT = INJECT + 'end\n' 
  
 f = open('data/ref.input','r') 
 FFILE = f.read() 
 f.close() 
  
 FFILE = FFILE.replace('%%INJECT%%',INJECT) 
  
 g = open('tmpdir/J' + NJ_S + 'x' + str(x) + '/' + RIFILE, 'w') 
 g.write(FFILE) 
 g.close() 
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#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Preparing Scale Run Files 
print 'Preparing Scale HPC Files (BSUB and RUN Command)' 
f = open('data/scale_run','r') 
SC_IFILE = f.read() 
f.close() 
 
for x in range(1,NP+1): 
     g = open('tmpdir/J' + NJ_S + 'x' + str(x) + '/scale_run', 'w') 
     SC_OFILE = SC_IFILE.replace('%%FF%%', RIFILE) 
     SC_OFILE = SC_OFILE.replace('%%P' , str(x)) 
     SC_OFILE = SC_OFILE.replace('%%J' , NJ_S) 
     g.write(SC_OFILE) 
     g.close()  
 
f = open('data/bsub_scale', 'r') 
BS_IFILE = f.read() 
f.close() 
 
for x in range(1, NP+1): 
     g = open('tmpdir/J' + NJ_S + 'x' + str(x) + '/bsub_scale', 'w') 
     BS_OFILE = BS_IFILE.replace('%%QQ%%', QUEUEGO) 
     BS_OFILE = BS_OFILE.replace('%%QT%%', QUEUETIME) 
     BS_OFILE = BS_OFILE.replace('%%P' , str(x)) 
     BS_OFILE = BS_OFILE.replace('%%J' , NJ_S) 
     g.write(BS_OFILE) 
     g.close()  
 
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Wait 5 Seconds for HDD to catch up 
print 'Sleeping for 3 seconds to let disks catch up' 
time.sleep(3) 
      
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
#! Run SCALE 
print 'Running Scale' 
for x in range(1, NP+1): 
     os.chdir('tmpdir/J' + NJ_S + 'x' + str(x) + '/') 
     os.system('chmod +x scale_run') 
     os.system('bsub < bsub_scale') 
     os.chdir('../..') 
 
print 'Script Complete' 
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Python NEWT-Binary Depletion Flux HPC Monitor Scripts: 
Depletion calculations using T-DEPL overwrite the binary flux file at each depletion time-
step. A monitoring script is required to maintain the binary file for each depletion time point. 
These two python scripts are included below (and must be added to the =shell section prior to 
the T-DEPL call in SCALE6). 
 
Launcher.py 
#! Monitor Launcher 
import os, subprocess 
 
FNULL = open(os.devnull,"w") 
subprocess.Popen(["python","monitor.py","15"], stderr=FNULL) 
 
print '\n  Launching Flux Monitor' 

 
 
Monitor.py 
#! Monitors SCALE depletion and maintains a record of NEWT Binary FLUX 
Output 
import time, sys, os 
 
NT = int(sys.argv[1]) 
 
zi = 0 
#! Look for first instance 
 
while (zi == 0): 
 time.sleep(10) 
 zres = os.popen("ls --time-style='+%H:%M:%S' -l ft31f001").read() 
 if ('\n' in zres): 
  zi = zi + 1 
  zts = zres.split()[5] 
  #! Time in Seconds 
  zt = int(zts.split(':')[0])*3600 + int(zts.split(':')[1])*60 + 
int(zts.split(':')[2]) 
 
print '\n  Grabbing Newt flux output' 
os.system('cp ft31f001 ft31f001_1') 
 
while (zi < NT): 
 time.sleep(10) 
 zres = os.popen("ls --time-style='+%H:%M:%S' -l ft31f001").read() 
  
 zts = zres.split()[5] 
 zt_test = int(zts.split(':')[0])*3600 + int(zts.split(':')[1])*60 + 
int(zts.split(':')[2]) 
  
 if (zt_test > zt): 
  time.sleep(2) 
  zi = zi + 1 
  zt = zt_test 
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  os.system('cp ft31f001 ft31f001_' + str(zi)) 
  print '\n  Grabbing Newt flux output' 
 
#! Monitoring Complete 
for x in range(0,NT): 
 os.system('cp ft31f001_' + str(x+1) + ' ${RTNDIR}/') 
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FExtract.F90 
PROGRAM FExtract 
! Program designed to read the NEWT 2D Scalar Flux Output from the Binary 
File: ft31f001 
! Chris Kennedy - NCSU 
!  
! Relevant Information extracted from VIPNEWT_I.f90, VIP_DATA.f90, 
ebindump2d.f90 
 
IMPLICIT NONE 
 
! Precision Flags for SAMS/NEWT 
INTEGER,PARAMETER :: isp = selected_int_kind(9) 
INTEGER,PARAMETER :: rsp = selected_real_kind(6) 
INTEGER,PARAMETER :: rdp = selected_real_kind(14) 
 
! Record 1 
INTEGER :: izm, im, mxx, ms, isct, mm, nom, igm 
!izm # of zones (NEWT variable numzone) 
!im # of mesh intervals (NEWT variable numcells) 
!mxx # of mixtures (NEWT variable nummat) 
!ms # of isotopes (NEWT variable nmix) 
!isct scattering order (NEWT variable maxpn) 
!mm # angles in quadrature (NEWT variable ndir) 
!nom # of moments (NEWT variable nmom) 
!igm # of groups (NEWT variable numen) 
 
! Record 2 
INTEGER :: ige, ibl, ibr, ibb, ibt, isn, iftg, mmt, nt1 
! ige = 0 (Geometry Term) 
! ibl - Left Boundary 
! ibr - Right Boundary 
! ibb - Bottom Boundardy 
! ibt - Top Boundary 
! isn - S(N) Quadrature Order 
! iftg - First THermal Group 
! mmt - # of Neutron Groups    
! nt1 - Working Library FT # 
CHARACTER(len=80) problem_title 
 
! Record 3 
REAL(rdp), ALLOCATABLE, DIMENSION(:) :: vol 
! VOL Volume of each Mesh Intervale 
 
! Record 4 
REAL(8), ALLOCATABLE ::  weight(:) 
REAL(8), ALLOCATABLE :: Ye(:,:) 
! weight - Angular Quadrature Weights 
! Ye - Scattering Constants for Flux Moments  
! Ye(i,j),i=0:nmom,j=1:ndir, Y(0,j) = 1 (always) and is not in the file. 
 
! Record 5 
INTEGER(isp), ALLOCATABLE :: ma(:) 
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INTEGER, ALLOCATABLE :: mat(:) 
INTEGER, ALLOCATABLE :: matndx(:) 
! ma (Zone by Mesh) (i=1..NCELLs) 
! mat(:) Mixture by Zone (i=1..NZONE) 
! matndx(:) Mixture ID by Zone (i=1..NZONE) 
 
! Record 6 
INTEGER, ALLOCATABLE :: mix(:) 
INTEGER, ALLOCATABLE :: nuc(:) 
INTEGER, ALLOCATABLE :: matpn(:) 
REAL, ALLOCATABLE :: den(:) 
! mix(i),i=1,nmix - mixture number in the mixing table (integer) 
! nuc(i),i=1,nmix - nuclide id in the mixing table (integer) 
! matpn(i),i=1,nummat - the order of the Legendre polynomial being used 
(integer) 
! den(i),i=1,nmix - atom density in mixing table (single precision) 
 
! Record 7 
INTEGER, ALLOCATABLE, DIMENSION(:) :: matid 
REAL(rsp), ALLOCATABLE, DIMENSION(:,:) :: chi, fisnu 
! matid(i),i=1,nummat - material numbers for each mixture (integer) 
! chi(i,j),j=1,numen, i=1,nummat - chi for each mixture (single precision) 
! fisnu(i,j),j=1,numen, i=1,nummat - nubar times fission x-sect for each 
mixture (single precision) 
 
! Record 8 
REAL(rdp) :: eigenf    ! Eigenvalue 
 
! Record 9 
REAL(rdp), ALLOCATABLE, DIMENSION(:,:,:) :: newt_flux 
! newt_flux(i,j,k) = Cell(i), Moment(j), Group(k).  One record for each 
energy group. 
! Note that moment 0 = Scalar flux (but needs to be transformed with 
Volume. 
 
! Remaining Calculations 
REAL(rdp), ALLOCATABLE, DIMENSION(:,:) :: volume_flux ! Volumetric Flux by 
Zone and Energy Group 
REAL(rdp), ALLOCATABLE, DIMENSION(:,:) :: scalar_flux ! Scalar Flux by 
Mixture and Energy Group 
INTEGER :: ix_g, ix_i, ix_j, ix_k ! Loop Variables 
 
CHARACTER(4) :: FC 
 
! ************************************************************* 
WRITE(*,*) "Extracting NEWT Flux Data..." 
 
! Open File 
OPEN(UNIT=31, FILE='ft31f001', STATUS='old', FORM='unformatted') 
 
! Read Record 1 ============================== 
READ(31) izm, im, mxx, ms, isct, mm, nom, igm 
!izm # of zones (NEWT variable numzone) 
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!im # of mesh intervals (NEWT variable numcells) 
!mxx # of mixtures (NEWT variable nummat) 
!ms # of isotopes (NEWT variable nmix) 
!isct scattering order (NEWT variable maxpn) 
!mm # angles in quadrature (NEWT variable ndir) 
!nom # of moments (NEWT variable nmom) 
!igm # of groups (NEWT variable numen) 
 
! Allocate Variables ************************ 
ALLOCATE ( weight(mm) ) 
weight = 0 
 
ALLOCATE (matid(mxx) ) 
matid = 0 
 
ALLOCATE ( matpn(mxx) ) 
matpn = 0 
 
ALLOCATE ( ma(im) ) 
ma = 0 
 
ALLOCATE ( mat(izm) ) 
mat = 0 
 
ALLOCATE ( matndx(izm) ) 
matndx = 0 
 
! ALLOCATE ( mb(ms) ) 
! mb = 0 
 
ALLOCATE ( mix(ms) ) 
mix = 0 
 
ALLOCATE ( nuc(ms) ) 
nuc = 0 
 
ALLOCATE ( den(ms) ) 
den = 0 
 
ALLOCATE ( chi(igm,mxx) ) 
chi = 0 
 
ALLOCATE ( fisnu(igm,mxx) ) 
fisnu = 0 
 
ALLOCATE ( vol(im) ) 
vol = 0 
 
ALLOCATE ( Ye(0:nom,mm) ) 
Ye = 0 
 
ALLOCATE ( newt_flux(im,0:nom,igm)) 
newt_flux = 0 
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ALLOCATE ( volume_flux(igm,izm) ) 
volume_flux = 0 
 
ALLOCATE ( scalar_flux(mxx,igm) ) 
scalar_flux = 0 
 
! Read Record 2 ============ 
READ(31) ige, ibl, ibr, ibb, ibt, isn, iftg, mmt, nt1, problem_title 
! See above  
 
! Read Record 3 ============ 
READ(31) vol 
! vol(i) Volume by mesh cell, i=1..ncells 
 
! Read Record 4 ============ 
READ(31) weight, Ye 
! weight - Angular Quadrature Weights 
! Ye - Scattering Constants for Flux Moments  
! Ye(i,j),i=0:nmom,j=1:ndir, Y(0,j) = 1 (always) and is not in the file. 
 
! Read Record 5 ============ 
READ(31) ma, mat, matndx 
! ma = zone by mesh (i=1..ncells) 
! mat = mixture by zone (i=1..nzones) 
! matndx = mixture index by zone (i=1..nzones) 
 
! Read Record 6 ============ 
READ(31) mix,nuc,matpn,den  
! mix(i),i=1,nmix - mixture number in the mixing table (integer) 
! nuc(i),i=1,nmix - nuclide id in the mixing table (integer) 
! matpn(i),i=1,nummat - the order of the Legendre polynomial being used 
(integer) 
! den(i),i=1,nmix - atom density in mixing table (single precision) 
 
! Read Record 7 ============ 
READ(31) matid, chi, fisnu 
! matid(i),i=1,nummat - material numbers for each mixture (integer) 
! chi(i,j),j=1,numen, i=1,nummat - chi for each mixture (single precision) 
! sigfnu(i,j),j=1,numen, i=1,nummat - nubar times fission x-sect for each 
mixture (single precision) 
 
! Read Record 8 ============ 
READ(31) eigenf 
 
! Read Records 9 to 8 + #_ENERGY_GROUPS ============ 
DO ix_g = 1, igm 
 READ(31) newt_flux(:,:,ix_g) 
 ! Loop over Mesh Cells 
 DO ix_i = 1, im 
  ! Get Zone 
  ix_j = ma(ix_i) 
  ! Calculate Volumetric Flux 
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  volume_flux(ix_g, ix_j) = volume_flux(ix_g, ix_j) + 
newt_flux(ix_i,0,ix_g)*vol(ix_i)   
 ENDDO 
ENDDO 
 
! Close File 
CLOSE(31)  
 
! Calculate Scalar Flux 
DO ix_i = 1, mxx 
 DO ix_g = 1, igm 
   DO ix_j = 1, im 
    ix_k = ma(ix_j) 
     
   ! The first mixture is the global mixture 
    IF (ix_i == 1) THEN 
        scalar_flux(ix_i,ix_g) = scalar_flux(ix_i,ix_g) + 
newt_flux(ix_j,0,ix_g)*vol(ix_j) 
     
    ELSE 
     
        IF (matndx(ix_k) /= ix_i) cycle 
     
        scalar_flux(ix_i,ix_g) = scalar_flux(ix_i,ix_g) + 
newt_flux(ix_j,0, ix_g)*vol(ix_j) 
       ENDIF 
   ENDDO 
  ENDDO 
 ENDDO 
 
OPEN(UNIT=32, FILE='FData.out', STATUS='replace') 
 
WRITE(32,'(A20, 1X, F20.14)') 'K-eff: ', eigenf 
WRITE(32,*) "Number of Mixtures: ", mxx 
WRITE(32,*) "Scalar Flux by Mixture and Energy Group" 
WRITE(FC,'(I4)') mxx  
WRITE(32,'(A5,' // FC // 'I24)' ) "Group", (ix_i, ix_i=1,mxx) 
DO ix_g = 1, igm 
  WRITE(32,'(I5, ' // FC // 'E24.14)') ix_g, (scalar_flux(ix_i, 
ix_g), ix_i=1,mxx) 
ENDDO 
 
CLOSE(32) 
END PROGRAM 
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SDFExtract.F90 
PROGRAM gSDF 
 
! Reads Deterministic SCALE SDF Files 
 
IMPLICIT NONE 
 
! Input Listings 
 
INTEGER :: NJ 
CHARACTER(4) :: NJ_STR 
INTEGER :: NP 
CHARACTER(4) :: NP_STR 
CHARACTER(4) :: CPS 
 
INTEGER :: ISO_NUM 
INTEGER :: RXN_NUM 
INTEGER :: NG 
INTEGER :: NF 
INTEGER :: NF_RI 
 
INTEGER :: NG_B             ! Group Boundaries 
INTEGER :: NG_E             ! Number of Full Line Entries 
INTEGER :: NG_LE            ! Number of Last Line Entries 
 
INTEGER :: SMODE 
 
! Temporary Data Storage 
CHARACTER(80) :: EMPTY 
CHARACTER(20) :: TN1, TN2 
CHARACTER(20) :: FILENAME 
CHARACTER(20) :: FILEROOT 
CHARACTER(20) :: PFILE 
CHARACTER(4) :: isz 
 
CHARACTER(32) :: inarg 
 
REAL(KIND=8) :: KFOR                                    ! K-effective 
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: EBOUNDS      ! Energy Group 
Bounds 
 
REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: S_INT_DATA              ! 
Energy Integrated Sensitivity Data 
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: S_REG_DATA              ! 
Region Data Contants 
REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: S_SEN_DATA              ! 
GroupWise Sensitivity Data 
REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: S_SEN_SIGMA   
    ! GroupWise Uncertainty Data 
INTEGER, DIMENSION(:,:), ALLOCATABLE :: S_ISO_DATA                   ! 
Isotope/MT Data 
 
INTEGER :: i1, i2, i3, i4, i5, is 
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! ************************************************************ 
! Command Line Parameters 
 
! Get Input File 
CALL getarg(1, PFILE)  
is = index(PFILE, '.inp', .FALSE.) 
WRITE(isz, '(I3)') is-1 
READ(PFILE, '(A' // isz // ')') FILEROOT 
 
CALL getarg(2, inarg) 
NJ_STR = inarg 
READ(NJ_STR, *) NJ 
 
! Here NP is the current Perturbation 
CALL getarg(3, inarg) 
NP_STR = inarg 
READ(NP_STR, *) NP 
 
! Mode = 0 implies Deterministic, Mode = 1 implies KENO (Uncertainties) 
CALL getarg(4, inarg) 
READ(inarg, *) SMODE 
 
! Prepare File 
FILENAME = TRIM(ADJUSTL(FILEROOT)) // '.sdf' 
OPEN (UNIT=(42), FILE=FILENAME) 
 
! File Header 
READ(42, *) EMPTY 
READ(42, *) NG, EMPTY 
READ(42, '(I10,A35,I10)') NF, EMPTY, NF_RI 
READ(42, *) KFOR 
     
! Initialize 
NG_B = NG + 1 
NG_LE = MOD(NG_B, 5) 
NG_E = NG_B - NG_LE 
 
! Allocations 
ALLOCATE(EBOUNDS(NG_B)) 
ALLOCATE(S_INT_DATA(NF,5)) 
ALLOCATE(S_REG_DATA(NF)) 
ALLOCATE(S_ISO_DATA(NF,4)) 
ALLOCATE(S_SEN_DATA(NF,NG)) 
ALLOCATE(S_SEN_SIGMA(NF,NG)) 
     
! Energy Boundaries 
READ(42, *) EMPTY 
DO i1 = 1, NG_E / 5 
    READ(42, *) (EBOUNDS(5*(i1-1)+i2), i2=1,5) 
ENDDO 
 
IF (NG_LE > 0) THEN 
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    READ(42, *) (EBOUNDS(NG_E + i2), i2=1,NG_LE) 
ENDIF 
 
! Sensitivity Data Init 
NG_LE = MOD(NG, 5) 
NG_E = NG - NG_LE 
 
IF (SMODE < 1) THEN 
 
    ! Sensitivity Data (Deterministic) 
    DO i1 = 1, NF 
        READ(42,'(A12, 1x, A14, 1x, 3I7, ES14.0)') TN1, TN2, 
S_ISO_DATA(i1,1), S_ISO_DATA(i1,2), S_ISO_DATA(i1,3), S_REG_DATA(i1) 
        READ(42,*) S_INT_DATA(i1, 1), S_INT_DATA(i1, 2), S_INT_DATA(i1, 3) 
        DO i2 = 1, NG_E / 5 
            READ(42, *) (S_SEN_DATA(i1, 5*(i2-1)+i3), i3=1,5) 
        ENDDO 
        IF (NG_LE > 0) THEN 
            READ(42, *) (S_SEN_DATA(i1, NG_E + i3), i3=1, NG_LE) 
        ENDIF 
    ENDDO 
 
ELSE 
 
    ! Sensitivity Data (KENO) 
     
    DO i1 = 1, NF 
        READ(42,'(A12, 1x, A14, 1x, 2I7)') TN1, TN2, S_ISO_DATA(i1,1), 
S_ISO_DATA(i1,2) 
        READ(42,*) S_ISO_DATA(i1,3), S_ISO_DATA(i1,4) 
        READ(42,*) S_REG_DATA(i1) 
        READ(42,*) S_INT_DATA(i1,1), S_INT_DATA(i1,4), S_INT_DATA(i1,2), 
S_INT_DATA(i1,3), S_INT_DATA(i1,5)  
        DO i2 = 1, NG_E / 5 
            READ(42, *) (S_SEN_DATA(i1, 5*(i2-1)+i3), i3=1,5) 
        ENDDO 
        IF (NG_LE > 0) THEN 
            READ(42, *) (S_SEN_DATA(i1, NG_E + i3), i3=1, NG_LE) 
        ENDIF 
        DO i2 = 1, NG_E / 5 
            READ(42, *) (S_SEN_SIGMA(i1, 5*(i2-1)+i3), i3=1,5) 
        ENDDO 
        IF (NG_LE > 0) THEN 
            READ(42, *) (S_SEN_SIGMA(i1, NG_E + i3), i3=1, NG_LE) 
        ENDIF 
    ENDDO 
 
 
END IF 
 
! Close File 
CLOSE(42) 
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! *********************************************************** 
! Output Data to File 
 
FILENAME = 's' // TRIM(ADJUSTL(NJ_STR)) // 'x' // TRIM(ADJUSTL(NP_STR)) // 
'.out' 
OPEN(UNIT=40, FILE=FILENAME) 
 
WRITE(40, *) NG, NF 
 
WRITE(40, '(A6,A8,A6,A5,A14, A14)') 'S#', 'ISOTOPE', 'MT', 'GRP', 'Region 
Data', 'SensData' 
DO i1 = 1, NF         
    DO i2 = 1, NG 
        WRITE(40, '(I6, I8, I6, I5, 1X, I12, 1X, ES14.6)') i1, 
S_ISO_DATA(i1, 1), S_ISO_DATA(i1, 2), i2, abs(S_ISO_DATA(i1,3)), 
S_SEN_DATA(i1, i2) 
    ENDDO 
ENDDO 
 
CLOSE(40) 
 
END program 
 
 
 

Sort.py 
#! Utility Sorts output XS Files to be consistent with SDF Files 
import numpy as np 
import sys 
 
NJ_S = sys.argv[1] 
 
XSP0 = np.loadtxt('XSP_' + NJ_S + '.dat') 
s = np.lexsort((XSP0[:,2],XSP0[:,1],XSP0[:,0])) 
XSP = XSP0[s] 
l = len(XSP0[0]) 
np.savetxt('XSPS_' + NJ_S + '.dat', XSP, fmt=(3 * '%i ') + ((l-3) * 
'%16.10e ')) 
 




